As I am discovering, ageing is an inevitable process. However what can you do to keep as healthy as possible in order to get the most out of life?
If you are a Masters athlete, you will know that moving into these age groups means it is advisable to change training emphasis in order to prevent injury and compete successfully. As discussed at the recent conference Royal Society of Medicine on Sports Injuries and Sports Orthopaedics, during the session on “The Ageing Athlete”, older athletes need a longer dynamic warm up with controlled mobilisation and muscle activation, together with strength and conditioning sessions to prevent injury. Moving into next age group every five years gives the opportunity to assess and modify training accordingly.
Childhood development has an impact on long term adult health. Essentially the most rapid changes and potential peaks attained during childhood and adolescence reflect optimal physical and cognitive functioning in later life. The evidence from population cohort studies was presented by Professor Diana Kuh, director of MRC Unit for Lifelong Health and Ageing, at the recent conference at the Royal Society of Medicine. Up to 66% of the decline in functional ability in ageing adults is related to childhood development. In the case of pubertal timing, Professor Kuh described that delay causes 20% reduction of volumetric trabecular bone accrual. In my 3 year longitudinal study of 87 pre and post pubertal girls, high levels of training delayed menarche and blunted attainment of peak bone mass (PBM). Conversely an optimal level of training did not delay menarche and improved bone mineral density compared to age marched sedentary controls. A similar long term effect is seen in older female athletes who have experienced amenorrhoea of more than 6 months duration. Even after retirement and resumption of menses pre-menopause, irreversible loss of bone mineral density (BMD) is seen. Professor Kuh argued for specific and personalised recommendations to individuals to support successful ageing.
From a personalised medical perspective, what about hormonal changes associated with ageing? Although in men testosterone levels decline with age, nevertheless the change is more dramatic in women at menopause where the ovaries stop producing oestrogen and progesterone. This results in increased risk after the menopause of osteoporosis, cardiovascular disease and stroke, together with other vasomotor symptoms and mood changes. With increased life expectancy comes an increasing number of women with menopausal symptoms and health issues which can negatively impact on quality of life. What about hormone replacement therapy (HRT)? HRT improves menopausal symptoms and reduces the risk of post menopausal long term health problems, provided HRT is started within ten years after the menopause. After this window of opportunity replacement oestrogen can actually accelerate cell damage. As with any medical treatment there will be those for whom HRT is contra-indicated. Otherwise the risk:benefit ratio for each individual has to be weighed up so that women can arrive at an informed decision. Regarding the risk of breast cancer, this is increased by 4 cases per 1,000 women aged 50-59 years on combined HRT. This compares to an additional 24 cases in women who have body mass index (BMI)>30 and are not on HRT. This underlines the important of lifestyle which is crucial in all areas of preventative medicine.
What type of HRT has the most favourable risk:benefit ratio? Oral preparations undergo first pass metabolism in the liver, so other routes of delivery such as transdermal may be preferred. There is also an argument that hormones with identical molecular structure are preferable to bio-similar hormones. What functional effect could a slight difference in sex steroid structure have? For example no methyl group and a side chain with hydroxyl group (C-OH) rather than a carbonyl group (C=O)? That is the difference between oestradiol and testosterone.


In the case of hormones with identical molecular structure to those produced endogenously, there are no potential unwanted side effects or immunogenic issues as the molecule is identical to that produced by the body. Although the oestradiol component in most HRT preparations in the UK has an identical molecular structure to endogenous oestradiol, there is only one licensed micronised progesterone preparation that has an identical molecular structure. Synthetic, bio-similar (not identical) progestins have additional glucocorticoid and androgenic effects compared to molecular identical progesterone which exerts a mild anti-mineralocorticoid (diuretic) effect.


With an increasing ageing population and increase in life expectancy, it is important to support successful ageing and quality of life with a personalised and specific approach.
For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance
References
Conference Royal Society of Medicine 17/1/17 “Sports Injuries and Sports Orthopaedics” Session on “The Ageing Athlete”
Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association Sport and Exercise Medicine
From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sport Medicine 22/2/17
Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sports Medicine
One thought on “Successful Ageing”