Hormone Intelligence

Applying artificial intelligence to modelling female hormones enables women to access hormone intelligence at her fingertips

Female hormone networks form the most complex aspect of the endocrine system. The menstrual cycle depends upon a delicate web of feedback mechanisms that trigger significant changes in hormone levels. This intricate physiological process generally operates reliably, but its timing and the hormone levels are affected by internal and external factors going on in a woman’s life. This is why women differ in their experiences of menstrual cycles and why an individual woman may notice differences between cycles.

Apart from being fascinating from a physiological point of view, why is this so important from a practical point of view for women? The reason is that female hormones are not just about fertility. The ovarian hormones oestradiol (most active form of oestrogen) and progesterone have significant effects through the body. Every biological system is dependent on these hormones: bones, muscle, nervous system, including brain function, skin, the cardiovascular and digestive systems [1]. This is why female hormones impact all aspects of health: physical, mental and social [2].

The cyclical fluctuations in female hormones occurring every menstrual cycle will also change over a woman’s lifespan. Completion of puberty is marked by the start of menstrual cycles: menarche. During her adult life a woman can expect regular menstrual cycles. However, subtle hormone disruption can be missed. Although blood testing is the most accurate way of measuring all four of the key female hormones, the standard protocol of taking a blood test at one time point in the cycle, when hormones are at their most quiescent, can miss subclinical menstrual cycle hormone dysfunction.

For example, in subclinical anovulatory cycles, although a woman may experience regular menstrual periods, subtle mistiming of female hormones will not be detected with a routine single blood test. Yet this type of hormone disruption can have potential adverse consequences on health. This is particularly relevant for exercisers, athletes and dancers who are either on the brink of or recovering from low energy availability. Early identification and prevention of relative energy availability in sport (RED-S) is important for both health and exercise performance [3].

A similar situation arises for women in the perimenopause when the responsiveness of her ovaries starts to decline. This is further complicated by the fact that the decrease in ovarian hormone production is not a smooth linear process. A blood test at a single time point may not identify these changes in key female hormone networks. Although perimenopause is a natural physiological process, it can be a challenging time for women, magnified by uncertainty. All change for female hormones

Women need a new, more supportive approach, to take away uncertainty and to empower them with insights into their hormone networks.

How can a woman understand the details of her female hormone network? In theory she could take daily blood tests for the four key hormones: pituitary control hormones follicle stimulating hormone (FSH), luteinising hormone (LH) and ovarian response hormones oestradiol and progesterone. Clearly this is not practical, but it may be possible to use fewer blood tests over a cycle. Machine learning, specifically Bayesian inference, can help by optimally combining test results with background information. This background knowledge includes medical understanding of hormone networks and the characteristics of the individual woman. Machine learning can revolutionise healthcare, as outlined in the report from the Chief Medical Officer of England [4]. It is an approach widely used in modelling biological systems [5]. Artificial intelligence is an important clinical tool to support the optimisation of personalised health [6].

It has recently become possible to create a personalised digital fingerprint of a woman’s menstrual cycle hormone network from just two finger prick capillary blood samples taken during a cycle. Artificial intelligence combines deep medical and mathematical understanding of female hormone networks with the individual details of a woman’s menstrual cycle length, age and activity levels. An expert report, providing an explanation of results with actionable, evidence-based advice, can be supplemented with a personal clinical medical discussion. This gives women the long-needed opportunity to connect with their personal female hormone networks. It empowers each woman to adopt a personalised, effective and proactive approach to optimise her hormone health.

To learn more about artificial intelligence applied to female hormone networks, have at look at previous discussions and forthcoming events where I am presenting on this topic and application of this approach for female health.Presentations

To take advantage of this exciting opportunity of fingerprinting hormone networks, you can order Female Hormone Mapping™ which combines medical, mathematical and technology expertise via the Forth website (available on a discounted introductory offer for a limited time). Your personal report is delivered at your fingertips on a mobile app. You can book an appointment for a personal discussion of your report with me Female Hormones

Every woman’s hormone network fluctuations are personal to her. Every woman is an individual.

References

Article St John’s College, Cambridge University

[1] Keay, N. What’s so good about Menstrual Cycles? British Journal of Sport and Exercise Medicine 2019

[2] Keay, N. Of Mice and Men (and Women) British Journal of Sport and Exercise Medicine 2019

[3] Keay, N. Relative energy deficiency in sport (RED-S) British Journal of Sport and Exercise Medicine 2018 and British Association of Sport and Exercise educational website Health4Performance

[4] “Machine learning for individualised medicine” Mihaela van der Schaar, Chapter 10 of the 2018 Annual Report of the Chief Medical Officer. Health 2040 – Better Health Within Reach. Accessed 2021

[5] Van de Schoot, R., Depaoli, S., King, R. et al. Bayesian statistics and modelling. Nat Rev Methods Primers 1, 1 (2021). https://doi.org/10.1038/s43586-020-00001-2

[6] Artificial Intelligence AI council. UK Government 2021

Energy Availability in Dancers

Here I discuss the findings from our recent study: Indicators and correlates of low energy availability in male and female dancers [1]. Thanks to my co authors and all the dancers who made this important study possible. I personally paid for open access to the entire paper so you and the whole dance community can read the full details.

Dance v Sport

Dance and Sport…plus ça change

There are many similarities between dancers and athletes, in terms of the physical and mental demands of training and performance. In both disciplines, training starts from a young age to hone technical skills. Dance, in particular, shares many of the challenges of aesthetic sports. In some ballets, the visual appearance of the corps de ballet is essential to the story line. In La Bayadere, the warrior sees in a dream multiple images of his true love, the dead temple dancer. In Swan Lake the corps de ballet moves like a flock of birds and in Les Sylphides the corps de ballet portrays ethereal spirits.

Furthermore, in dance and certain sports low body weight is perceived to confer a performance advantage. This is not just for aesthetics, but also to meet the technical dance demands of elevation and pointe work, where the whole of a dancer’s body weight goes through the first metatarsal joint (big toe joint). Indeed, the spotlight was on dancers in some of the early studies on the potential incidence and consequences of low energy availability [2]. However, since initial studies in dancers, the focus has been on athletes involved in sport, culminating in the International Olympic Committee (IOC) consensus statement published in 2014 on relative energy deficiency in sport (RED-S). As the name RED-S indicates, sport is the focus of this clinical syndrome describing the clinical consequences of low energy availability on health and performance [3].

What’s new in dance?

Whilst there are clearly parallels with dance and sport, there are equally some fundamental differences from cultural and organisational perspectives. Furthermore, the demands of dance have changed dramatically over just two generations. The illustration shows my grandmother from 1920s, with loose fitting costume, en pointe on two feet with a “romantic” interpretation, who was invited to join the legendary Dame Ninette De Valois and her company. This contrasts to her granddaughter (me!) at about the same age from 1980s, wearing a tight fitting, shorter length tutu, en pointe on one leg and portraying a different style of ballet.

1920s my grandmother v 1980s granddaughter (me!)

Relative Energy Deficiency in Dance
To explore the current situation of low energy availability in the dance community against the backdrop of these changes in demands, we conducted a study of dancers worldwide to assess indicators and correlates of low energy availability. Building on the sport specific energy availability questionnaire [4], we developed a dance specific version to ensure engagement with dancers [1].

The key findings from this survey of 247 dancers found that 57% of female dancers and 27% of male dancers were at risk of RED-S. Psychological factors are recognised to play a part in both the cause and consequences of RED-S. From our study of dancers a significant cluster of psychological interrelationships was found. Dancers who rated control of eating as important, also did so for control of body weight as well as expressing anxiety about missing training. In order to be a successful dancer, self-discipline and self-motivation are undoubtedly important. However, in contrast to dancers from previous generations the pervasive pressure from social media is ever increasing, alongside perceived dance specific demands of being of a certain weight to gain leading roles.

Strikingly, significant relationships were found between these psychological factors and physical and physiological indicators of low energy availability, including low body weight and menstrual dysfunction.

That is not to say that dancing is an inherently an “unhealthy” pursuit. Far from it: dance has been shown to have beneficial effects on both physical and mental wellbeing, both from a participant and an audience point of view. Dance goes beyond the dimension of physical performance, calling upon musicality, expression and acting. This is why an important message from this study is to raise awareness about misperceptions about body weight, in order to support optimal dance performance. Rather, anxiety about body weight can have negative consequences on physical and mental health, and ultimately impair dance performance. Raising awareness about low energy availability and relative energy deficiency in dance and sport was the rationale for writing the British Association of Sport and Exercise Medicine open access, educational website [5]

The other important message from this study is that early identification of aspiring male and female dancers at risk of developing the clinical consequences of relative energy deficiency in dance could be possible with a dance specific questionnaire used in this study. As with participation in sport, early identification is crucial as a proactive, preventative measure. In other words, keeping in step with the increasing demands of dance in a changing world, rather than relying on reactive measures to deal with the ensuing mental and physical injuries of relative energy deficiency in dance.

The pandemic has impacted everyone. This includes professional dancers and athletes. Whilst the return of professional athletes to some competition has been facilitated, theatres where dancers perform remain shut. These are unprecedented, challenging times for dancers. On the other hand, this does offer the opportunity to plan for ways to ensure future generations of healthy dancers with sustainable careers.

References

1 Keay N, Overseas A, Francis G. Indicators and correlates of low energy availability in male and female dancers BMJ Open Sport & Exercise Medicine 2020;6:e000906. doi: 10.1136/bmjsem-2020-000906

2 Keay N, Fogelman I, Blake G Bone mineral density in professional female dancers. British Journal of Sports Medicine 1997;31:143-147

3 Keay N, Francis G Infographic. Energy availability: concept, control and consequences in relative energy deficiency in sport (RED-S) British Journal of Sports Medicine 2019;53:1310-1311.

4 Keay N, Francis G, Hind K Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists BMJ Open Sport & Exercise Medicine 2018;4

5 www.health4performance.co.uk BASEM educational website

“Of Mice and Men….”

“We need to treat individual women, not statistics” was the concluding sentence of an insightful BMJ Editorial 2019 [1]

However, as Caroline Criado Perez points out in her recent, science prizing-winning book, Invisible Women, in many instances there are no scientific or medical statistics on women[2].

Mouse
“Where are the females?”

The efficacy of drugs is predominately initially tested in vivo on male cells. So at inception, potentially many medications, which might have been effective in females are discarded at the earliest stage of research, because no effects are observed in male cells. The trend of the default male organism in research follows through into animal experimentation on male mice. Although animal models may not be entirely predictive of effects in humans, certainly the effects in female humans will be even less certain. Does it matter that research is conducted predominately on male tissue, male organisms and men? Thalidomide, specifically one of the optimal isomers, is a drug that had devastating teratogenic effects when taken by women. Indeed, a wide range of potential sex differences in the effects and metabolism of drugs has been reported. Furthermore the action of drugs, including adverse effects, can vary according the phases of the menstrual cycle, due to variations in circulating sex steroids. For example, certain drugs are likely cause arrhythmia in the follicular phase of the menstrual cycle[3]. Yet the effect of many drugs in females is not well understood, as research had not included females, let alone women in different phases of the menstrual cycle.

Why is research focused on males? There is an argument that the menstrual cycle in females is “too complicated” or including women in a study at difference phases of the menstrual cycle “will interfere with results”. Menstrual cycles have been around since women evolved, so this is not a phenomenon that is going to go away anytime soon. Therefore, welcoming the complexity of the intricate choreography of hormones during the menstrual cycle and during the lifetime of a women, is a more constructive approach. Certainly a more acceptable scientific approach is where the objective is to elucidate similarities and differences between men, rather than excluding the female half of the population and assuming no differences in physiology and metabolism exist. Furthermore there are differences between individual women. Individual women will be impacted by fluctuations of hormones during the menstrual cycle in different ways, depending on varying tissue sensitivities to steroids between individuals.

This concept is especially important in sports science where the vast majority of studies are conducted in males. As I outlined in my presentation recently at Barça Innovation Hub, before discussing external factors (training load, nutrition, recovery), researched in males, for female athletes is is vital to take into account internal bio-chronometers[4]. Circadian misalignment leads to suboptimal health and performance[5]. For female athletes, the most important cyclical variation of hormones during the menstrual cycle. Furthermore, these periodic changes in hormones have individual effects. Only when these are recognised can external factors be integrated with internal periodicity. In other words by taking account of individual internal variations, this makes it possible to provide personalised advice. Tracking menstrual cycles provides an important training metric as menstrual cycles are a barometer of healthy hormones[6]. As it becomes easier to track personal health and performance data on a daily basis, both researchers and individual women can gain a better understanding of how female physiology varies over the menstrual cycle. Optimising health and performance for the individual female athlete, makes for a stronger team.

What about in the clinical medical setting? I recently attended an excellent update on acute medicine for medical doctors. An eminent cardiologist presented a series of case studies, including a woman who started experiencing symptoms in the morning, which both she and doctors thought were due to indigestion. Eventually when this “indigestion” had not settled by later afternoon, she attended A&E. She had suffered an extensive myocardial infarction (heart attack). The cardiologist explained that even though she went to a hospital with an on-site primary percutaneous coronary intervention facility, unfortunately due to the long delay in presenting to hospital, the heart muscle had died. The opportunity had been missed to take her into the catheterisation laboratory to restore blood flow and function to the cardiac muscle. He outlined how this delay in diagnosis would have a big impact on her future quality of life and life span. Unfortunately this is not an isolated case. Women are far more likely to be misdiagnosed as not having acute coronary syndrome, when in fact they are indeed suffering a “heart attack”. Why is this? The “typical” presentation of myocardial infarction of central crushing chest pain with radiation to left neck and arm, disseminated to the public and medical students, is in fact only typical for men. Women present with “atypical” symptoms, in other words atypical for men[7]

Even where female specific statistics do exist, the emphasis should be on considering the individual woman in clinical context. The recent BMJ editorial on HRT emphasised providing women with high quality, unbiased information on which women can weigh up their personal risk/benefit outcomes from HRT. As, each woman can experience changes in hormones differently, including those occurring at the menopause; so the emphasis should be on an individual woman’s quality of life rather than epidemiological statistics[1].

There are important differences between mice, men and women.

References

[1] Rymer J, Brian, K, Regan L. HRT and breast cancer risk. BMJ Editorial 2019. dx.doi. org/10.1136/bmj.l5928

[2] Caroline Criado Perez. Royal Society Book Prize. Invisible Women. Publisher Chatto & Windus 2019

[3] Soldin O, Chung S, Mattison D. Sex Differences in Drug Disposition. Journal of Biomedicine and Biotechnology 2011, Article ID 187103 doi:10.1155/2011/187103

[4] N. Keay “Dietary periodisation for female football players” Barca Innovation Hub conference, Camp Nou, Barcelona, 9 October 2019

[5] N.Keay, Internal Biological Clocks and Sport Performance BJSM 2017

[6] N.Keay, What’s so good about Menstrual Cycles? BJSM 2019

[7] Khamis R, Ammari T, Mikhail G. Gender differences in coronary heart disease. Education in Heart. Acute coronary syndromes. BMJ Heart http://dx.doi.org/10.1136/heartjnl-2014-306463

 

 

 

Energy Availability: Concept, Control and Consequences in relative energy deficiency in sport (RED-S)

Relative energy deficiency in sport (RED-S) is an issue of increasing concern in sports and exercise medicine. RED-S impact exercisers of all levels and ages, particularly where low body weight confers a performance or aesthetic advantage. Key to mitigating adverse health and performance consequences of RED-S is supporting athletes and dancers to change behaviours. These infographics aim to assist clinicians in communicating the concepts to exercisers and in implementing effective management of athletes in their care[1].

Slide1

Figure 1 illustrates the concept of energy availability (EA) in RED-S. Preferentially energy derived from dietary intake covers the demands of training and the remaining energy, EA, is, quantified in Kcal/Kg of fat free mass[2]. In Figure 1, the central bar illustrates adequate EA in an athlete where energy intake is sufficient to cover the demands of training and fundamental life processes to maintain health. Conversely, low energy availability (LEA) is a situation of insufficient EA to cover basic physiological demands. LEA leads to the adverse consequences of RED-S[3]. LEA can arise unintentionally or intentionally, due to a mismatch between energy intake and energy requirement. In Figure 1 the bar on the left shows LEA resulting from reduced energy intake with maintained training load. On the right, LEA is a consequence of increased training load with maintained energy intake.

Figure 2 illustrates that EA is under the control of an athlete[4]. The three behaviours relating to training, nutrition and recovery determine EA. Integrated periodisation of these behaviours results in optimal health and performance. Conversely, an imbalance in these behaviours results in suboptimal functionally. LEA in the case of high training loads relative to nutritional intake. Thus, this figure reinforces the important point in the IOC statements on RED-S that psychological factors which determine these behaviours are key in both the development, continuation and management of RED-S[2,3].

Slide1

Figure 2 also shows the temporal, synergistic effect of these behaviours to ensure a fully functioning endocrine system. Hormones are key for health and to drive positive adaptations to exercise, to improve athletic performance. Thus hormones can be informative in tracking the response of an individual to these three input variables. Furthermore, endocrine markers relate to the RED-S clinical outcome of stress fracture in athletes, being more reliable as objective, quantifiable indicators of EA than numerical calculation of EA from direct assessment[5].

Authors

Nicola Keay1, Gavin Francis2

1 Department of Sport and Exercise Sciences, Durham University

2 Science4Perforamnce, London

Br J Sports Med 2019;0:1–2. doi:10.1136/bjsports-2019-100611

References

1 http://health4performance.co.uk (accessed 21/01/2019) Health4Performance Educational BASEM website raising awareness of RED-S Working group on RED-S British Association of Sport and Exercise Medicine 2018

2 Mountjoy M, Sundgot-Borgen J, Burke L et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update Br J Sports Med2018;52(11):687-697

3 Mountjoy M, Sundgot-Borgen J, Burke L et al. The IOC consensus statement: beyond the Female Athlete Triad–Relative Energy Deficiency in Sport (RED-S). Br J Sports Med2014;48(7):491-7

4 Burke L, Lundy B, Fahrenholtz L et al, & Melin. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. International Journal of Sport Nutrition and Exercise Metabolism2018; 28(4):350–363. https://doi.org/10.1123/ijsnem.2018-0142

5 2Heikura I, Uusitalo A, Stellingwerff T et al. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. International Journal of Sport Nutrition and Exercise Metabolism2018; 28(4):403–411. https://doi.org/10.1123/ijsnem.2017-0313

Returning to Sport/Dance restoring Energy Availability in RED-S?

Although improvements are being made in raising awareness and in effective medical management of relative energy deficiency in sport (RED-S)[1, 2] what about once an athlete/dancer is “medically cleared” to return to sport/dance? What advice/support is there for athletes/dancers and their coaches/teachers? After discussions with coaches, here are some suggestions on how to achieve return to sport/dance after RED-S.

LifeSeasonDayTo recap, RED-S is a situation of low energy availability (LEA), which can lead to adverse health and performance consequences[3,4]. LEA can be a result of intentional energy restriction, which covers a spectrum of issues with eating from disordered eating to full blown clinical eating disorder. Ironically the original intention of these eating issues may have been to improve athletic performance, yet sustained LEA will ultimately lead to stagnation and deterioration in performance as found in male athletes[5].

The desire to return to full fitness can be a powerful incentive to address LEA. Nevertheless return to sport/dance needs to be carefully structured in collaboration with coaches to prevent injury and avoiding regression to the LEA state.

Structured return to training and nutrition

  • Initially focus should be on body weight strength and conditioning (S&C). Inevitably in RED-S adaptive responses to training stimuli will be dampened due to shut down of hormones networks into an energy saving mode. Once adequate EA has been established, hormone networks will be able to respond. Restoring muscle tone and working on proprioception forms a good basis to build from to mitigate injury risk. Impaired neuromuscular skills have been reported in female athletes in LEA[6], together with adverse effects of LEA on bone health increases injury risk.
  • The other reason for gradual return to training is that a routine of fuelling around training (before, during, after) needs to be established. In particular recovery nutrition within 30 minutes window to enable hormonal responses to training. Note that having this recovery nutrition does not mean reducing intake at the next meal!
  • Long endurance should be eased into after restoring muscle strength and control, in order to prevent injury. Additionally this type of training will necessitate a higher energy requirement. If adequate energy availability has only recently been restored, the balance is fragile and so too much training too soon can have negative effects. Especially if a fuelling strategy around training has not been established as described above.
  • High intensity/interval training should be the last type of training to be resumed as this places the highest stress and requires the highest energy demand on the athlete/dancer.
  • Injury, soft tissue and bone stress responses are more frequent in hormonal dysfunction of RED-S in both male and female athletes[7]. If an injury has been sustained during this period of LEA then particular emphasis needs to be on initial S&C. In the case of previous bone stress responses, multi-direction loading is key to build bone strength before resuming formal run training in athletes who are runners. Even if a bone injury has not occurred, bone turnover is one of the first systems to be adversely impacted by RED-S, so including this type of multidirectional bone loading in the initial structured return for all athletes/dancers would be beneficial.
  • Discuss with your coach a realistic, attainable goal if this will help. Maybe a low key race/event several months down the track

What to look out for

  • Don’t ignore injury niggles, illness or fatigue. Discuss with your coach and back off if necessary. This is a process, not a sprint.
  • Female athletes. You may well have experienced menstrual disruption during your time in LEA. This is a crucial training metric. Please use it! If your menstruation becomes irregular/stops this is your warning sign that your body is not ready to step up training[7]. Male coaches please reinforce this and be aware of this point. Remember Gwen Jorgensen posting her periods on Training Peaks as a training metric?
  • Flexibility in approach. Try not to put pressure on yourself to return to your previous PBs. It is important to have a plan, but you can be flexible. Everyone is different so this process of returning to sport/dance does not have a set, rigid timetable.
  • Enjoyment! Don’t forget the original reason that you started your sport/dance was for enjoyment! This is an opportunity to rediscover that joy, whether you return to competition or not.
  • “Recovery?” Does anyone fully “recover” from disordered eating/eating disorder? I don’t think so. To be a successful athlete, or indeed successful in life you need self-motivation, drive, determination. All admirable qualities, but sometimes these can get diverted to cause unhealthy eating/training patterns. So be aware that in times of stress it may be tempting to revert to old habits of under eating/over exercise to reassure yourself that you are in control.
  • Be prepared for questions: why have you been off training? Why are you not doing fully training schedule? Maybe you want to tell your team mates/friends. Maybe you don’t. That is your call.

So good luck with your return to sport/dance after RED-S, if that is what you want to do. Always discuss with you coach how to approach this.

References

1 BASEM Educational website www.health4perforamnce.co.uk

BJSM blog: Update on RED-S N Keay 2018

3, 4 IOC consensus statements on RED-S BJSM 2014 and update 2018

5 Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. N Keay, G Francis, K Hind. BMJ Open in Sport and Exercise Medicine 2018

5 Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes.
Tornberg Å Melin A Koivula F Johansson A Skouby S et. al.Medicine and science in sports and exercise 2017 vol: 49 (12) pp: 2478-2485

6 Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Heikura, Ida A. Uusitalo, Arja L.T. Stellingwerff, Trent et al International Journal of Sport Nutrition and Exercise Metabolism 2018, 28, 4, 403-411

7 What’s so good about Menstrual Cycles? N Keay BJSM blog 2019

What’s so good about menstrual cycles?

Menstrual periods are a barometer of healthy hormones. The evolutionary purpose of ovulation is to reproduce. Furthermore the carefully biologically choreographed variation of hormones that occurs during an ovulatory menstrual cycle is crucial to health and athletic performance.

Why? Hormones are chemical messengers that have far reaching effects throughout the body and drive the beneficial adaptations to exercise. In the case of menstrual cycles, the fluctuations of oestrogen and progesterone are key to this process. The effects of these sex steroids go far beyond reproduction. These hormones play important roles in bone strength, cardiovascular health, optimal lipid profile and production of neurotransmitters to regulate mood. The effects of low levels of oestrogen and progesterone are well documented in menopausal women who experience loss in bone mass, risk of osteoporosis and fracture, together with an increase risk of cardiovascular disease.

Some definitions

Amenorrhoea=lack of menstrual cycles

Menarche= start of menstrual cycles

According to the Royal College of Obstetrics and Gynaecology

Primary Amenorrhoea: no onset of menstrual cycles by age 16 years.

Secondary amenorrhoea: cessation of menstrual cycles in a previously regularly menstruating woman for > 6months

Oligomenorrhoea: < 9 menstrual cycles per calendar year

Any form of amenorrhoea requires medical investigation to exclude an underlying medical condition. The most common medical causes of amenorrhoea are polycystic ovary syndrome (PCOS), prolactinoma, thyroid conditions and other endocrine conditions. Functional hypothalamic amenorrhoea (FHA) is a diagnosis of exclusion. In other words before arriving at a diagnosis of FHA [1], medical conditions that could potentially cause amenorrhoea have to be ruled out.

Screen Shot 2019-01-30 at 12.09.28

Relative energy deficiency in sport (RED-S) is a situation of low energy availability (LEA) that can be unintentional or intentional as a result of a mismatch between energy intake and energy requirement. The two sources of energy demand arise from exercise training load and maintenance of fundamental physiological function across multiple body systems [2]. In female athletes/dancers with RED-S the most obvious clinical sign is amenorrhoea as a result of FHA. In all cases of RED-S the management strategy is directed to address the underlying issue of LEA [3].

In female athletes/dancer with FHA due to RED-S, there is the possibility of pharmacological intervention based on the RED-S Clinical Assessment Tool [4]. In other words evidence from DXA of Z-score of lumbar spine < -1 and/or stress fracture. What are the most effect hormonal interventions in such cases?

What’s in a name? It is every woman’s right to choose the form of contraception she wishes to use. Hormonal contraception provides a convenient method. The combined oral contraceptive pill (OCP) contains oestrogen and progesterone to prevent ovulation. The OCP produces regular withdrawal bleeds in response to these external hormones. Progesterone-only contraception can be taken orally, via implant or delivered by an intrauterine coil and typically does not produce withdrawal bleeds. As with any medication there are potential side effects, which have to be weighed up against the benefits. Regarding the effect of hormonal contraception on bone in young menstruating women, there is evidence that such medication can impair bone health [5].

The OCP produces regular withdrawal bleeds. These are NOT menstrual periods; ovulation is prevented. Rather the OCP causes withdrawal bleeds driven by external non-physiological hormones, as opposed to internally physiologically produced hormones. This is a reason why the OCP is not recommended in FHA, as this medication will mask what is happening with internal hormones [6]. In other words the barometer of healthy hormones has been removed when taking the OCP.

Furthermore, studies show that the OCP can impact other hormone systems that play a role in bone health. The OCP is taken orally thereby producing first pass effects in the liver. These effects include induction of liver enzymes and increased production of binding proteins for hormones. Binding proteins reduce the freely available active form of hormones such insulin like growth factor 1 (IGF-1). This effect is particularly marked in those OCP with non-physiological ethinyl oestradiol. In the case of RED-S there is already a low level of active IFG-1, due to the general suppression of the hypothalamic-pituitary axis.

Therefore in addition to masking FHA, the OCP can also further decrease IGF-1 and thus compound the negative effect on bone. This has been shown to be the case in the clinical setting where the OCP was found to have no bone protective effect on bone mineral density (BMD) in women with FHA. Rather hormone replacement therapy (HRT) consisting of transdermal physiological oestrogen with cyclic micro-ionised progesterone was found to have a positive effect on BMD [7 , 8]

Therefore, if hormonal treatment is to be used in RED-S, HRT (transdermal oestradiol and cyclic micro-ionised progesterone) is best clinical practice. This decision requires careful discussion with the athlete/dancer clarifying that HRT should only be a short-term measure to protect bone health whilst the underlying issue of LEA is being resolved. Behavioural measures relating to training load, nutrition and recovery are essential to restore global hormonal function.

OCP V HRT

• What? Both provide oestrogen and progesterone, but in different forms: non-physiological v physiological

Why? Purpose of the OCP is to suppress production of endogenous female hormones and prevent ovulation. Purpose of HRT is to replace the physiological amount and form of oestrogen and progesterone

How? The OCP decreases levels of active, unbound IGF-1. Not bone protective in FHA of RED-S. HRT shown to improve BMD in FHA of RED-S

What to do? Hormonal contraception is a choice for women. In some medical conditions where there is adequate/excess oestrogen such as endometriosis or PCOS, hormonal contraception is effective in clinical management. However in the case of FHA, in particular when occurring as a consequence of LEA in RED-S there is evidence that the OCP is not bone protective and masks the clinical sign of menstruation.

The priority in managing RED-S is to address LEA. If bone protection is required, whilst addressing LEA, HRT (transdermal oestrogen and cyclic progesterone) is best clinical practice.

References

[1] Joy, E., De Souza, M. J., Nattiv, A., Misra, M., Williams, N. I., Mallinson, R. J., … Borgen, J. S. (2014). 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad. Current Sports Medicine Reports, 13(4), 219–232. https://doi.org/10.1249/JSR.0000000000000077

[2] Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., … Ljungqvist, A. (2014). The IOC consensus statement: Beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine48(7), 491–497. https://doi.org/10.1136/bjsports-2014-093502

[3] Mountjoy, M., Sundgot-Borgen, J. K., Burke, L. M., Ackerman, K. E., Blauwet, C., Constantini, N., … Budgett, R. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. British Journal of Sports Medicine, 52(11), 687–697. https://doi.org/10.1136/bjsports-2018-099193

[4] Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., … Ackerman, K. (2015, April 1). Relative energy deficiency in sport (RED-S) clinical assessment tool (CAT). British Journal of Sports Medicine. BMJ Publishing Group. https://doi.org/10.1136/bjsports-2015-094873

[5] Beksinska M, Smit J, Hormonal contraception and bone mineral density. Expert Review of Obstetrics & Gynecology, 2011 vol: 6 (3) pp: 305-319

[6] Gordon, C. M., Ackerman, K. E., Berga, S. L., Kaplan, J. R., Mastorakos, G., Misra, M., … Warren, M. P. (2017). Functional hypothalamic amenorrhea: An endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism102(5), 1413–1439. https://doi.org/10.1210/jc.2017-00131

[7] Ackerman, K. E., Singhal, V., Baskaran, C., Slattery, M., Campoverde Reyes, K. J., Toth, A., … Misra, M. (2018). Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: A randomised clinical trial. British Journal of Sports Medicine. BMJ Publishing Group. https://doi.org/10.1136/bjsports-2018-099723

[8] Singhal, V., Ackerman, K. E., Bose, A., Torre Flores, L. P., Lee, H., & Misra, M. (2018). Impact of Route of Estrogen Administration on Bone Turnover Markers in Oligoamenorrheic Athletes and its Mediators. The Journal of Clinical Endocrinology & Metabolism. https://doi.org/10.1210/jc.2018-02143

 

 

Raising Awareness of RED-S in Male and Female Athletes and Dancers

Health4Performance is a recently developed BASEM open access educational resource

This is a world premier: a resource developed for and by athletes/dancers, coaches/teachers, parents/friends and healthcare professionals to raise awareness of Relative Energy Deficiency in Sport (RED-S)

What?

Optimal health is required to attain full athletic potential. Low energy availability (LEA) can compromise health and therefore impair athletic performance as described in the RED-S clinical model.

Dietary energy intake needs to be sufficient to cover the energy demands of both exercise training and fundamental physiological function required to maintain health. Once the energy demands for training have been covered, the energy left for baseline “housekeeping” physiological function is referred to as energy availability (EA). EA is expressed relative to fat free mass (FFM) in KCal/Kg FFM.  The exact value of EA to maintain health will vary between genders and individuals, roughly equivalent to resting metabolic rate of the individual athlete/dancer. LEA for an athlete or dancer will result in the body going into “energy saving mode” which has knock on effects for many interrelated body systems, including readjustment to lower the resting metabolic rate in the longer term. So although loss in body weight may be an initial sign, body weight can be steady in chronic LEA due to physiological energy conservation adaptations. Homeostasis through internal biological feedback loops in action.

The most obvious clinical sign of this state of LEA in women is cessation of menstruation (amenorrhea). LEA as a cause of amenorrhoea is an example of functional hypothalamic amenorrhoea (FHA). In other words, amenorrhoea arising as a result of an imbalance in training load and nutrition, rather than an underlying medical condition per se, which should be excluded before arriving at a diagnosis of FHA. All women of reproductive age, however much exercise is being undertaken, should have regular menstrual cycles, which is indicative of healthy hormones. This explains why LEA was first described as the underlying aetiology of the female athlete triad, as women in LEA display an obvious clinical sign of menstrual disruption. The female athlete triad is a clinical spectrum describing varying degrees of menstrual dysfunction, disordered nutrition and bone mineral density. However it became apparent that the clinical outcomes of LEA are not limited to females, nor female reproductive function and bone health in female exercisers. Hence the evolution of the clinical model of RED-S to describe the consequences of LEA on a broader range of body systems and including male athletes.

A situation of LEA in athletes and dancers can arise unintentionally or intentionally. In the diagram below the central column shows that an athlete where energy intake is sufficient to cover the demands from training and to cover basic physiological function. However in the column on the left, although training load has remained constant, nutritional intake has been reduced. This reduction of energy intake could be an intentional strategy to reduce body weight or change body composition in weight sensitive sports and dance.  On the other hand in the column on the right, training load and hence energy demand to cover this has increased, but has not been matched by an increase in dietary intake. In both these situations, whether unintentional or intentional, the net results is LEA, insufficient to maintain health. This situation of LEA will also ultimately impact on athletic performance as optimal health is necessary to realise full athletic potential.

EnergyBalance

Although LEA is the underlying aetiology of RED-S, there are many methodological and financial issues measuring LEA accurately in “free living athletes“. In any case, the physiological response varies between individuals and depends on the magnitude, duration and timing of LEA. Therefore it is more informative to measure the functional responses of an individual to LEA, rather than the value calculated for EA. As such, Endocrine markers provide objective and quantifiable measures of physiological responses to EA. These markers also reflect the temporal dimension of LEA; whether acute or chronic. In short, as hormones exert network effects, Endocrine markers reflect the response of multiple systems in an individual to LEA. So by measuring these key markers, alongside taking a sport specific medical history, provides the information to build a detailed picture of EA for the individual, with dimensions of time and magnitude of LEA. This information empowers the athlete/dancer to modify the 3 key factors under their control of training load, nutrition and recovery to optimise their health and athletic performance.

Slide1

Why?

Who is at risk of developing RED-S? Any athlete involved in sports or dance where being light weight confers a performance or aesthetic advantage. This is not restricted to elite athletes and dancers. Indeed the aspiring amateur or exerciser could be more at risk, without the benefit of a support team present at professional level. Young athletes are at particular risk during an already high energy demand state of growth and development. Therefore early identification of athletes and dancers at risk of LEA is key to prevention of development of the health and performance consequences outlined in the RED-S clinical model. Although there is a questionnaire available for screening for female athletes at risk of LEA, more research is emerging for effective and practical methods which are sport specific and include male athletes.

How?

Early medical input is important as RED-S is diagnosis of exclusion. In other words medical conditions per se need to be ruled out before arriving at a diagnosis of RED-S.  Prompt medical review is often dependent on other healthcare professionals, fellow athletes/dancers, coaches/teachers and parents/friends all being aware and therefore alert to RED-S. With this in mind, the Health4Performance website has areas for all of those potentially involved,  with tailored comments on What to look out for? What to do? Ultimately a team approach and collaboration between all these groups is important. Not only in identification of those at risk of LEA, but in an integrated support network for the athlete/dancer to return to optimal health and performance.

References

Heath4Performance BASEM Educational Resource

Video introduction to Health4Performance website

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) BJSM 2018

What is Dance Medicine? BJSM 2018

Identification and management of RED-S Podcast 2018

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists Keay, Francis, Hind. BJM Open Sport and Exercise Medicine 2018

How to Identify Male Cyclists at Risk of RED-S? 2018

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes IJSNM 2018

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes IJSNM 2017

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

 

How to Identify Male Cyclists at Risk of RED-S?

Relative energy deficiency in sport (RED-S) is a clinical model that describes the potential adverse health and performance consequences of low energy availability (LEA) in male and female athletes. Identification of athletes at risk of LEA can potentially prevent these adverse clinical outcomes.

Athletes at risk of RED-S are those involved in sports where low body weight confers a performance or aesthetic advantage. In the case of competitive road cycling, being light  weight results in favourable power to weight ratio to overcome gravity when cycling uphill. How can male cyclists at risk of LEA be effectively identified in a practical manner?

Energy availability (EA) is defined as the residual energy available from dietary intake, once energy expenditure from exercise training has been subtracted. This available energy is expressed as KCal/Kg fat free mass (FFM). A value of 45 KCal/Kg FFM is roughly equivalent to basal metabolic rate, in other words the energy required to sustain health. In order to quantify EA, accurate measurements of energy intake and expenditure, and FFM assessed from dual X ray absorptiometry (DXA), need to be undertaken. However this is not practical or feasible to undertake all these measurements outside the research setting. Furthermore, methodology for assessing energy intake and expenditure is laborious and fraught with inaccuracies and subjectivity in the case of diet diaries for “free living athletes“. Even if a value is calculated for EA, this is only valid for the time of measurement and does not give any insights into the temporal aspect of EA. Furthermore, an absolute EA threshold has not been established, below which clinical symptoms or performance effects of RED-S occur.

Self reported questionnaires have been shown to be surrogates of low EA in female athletes. However there are no such sport specific questionnaires, or any questionnaires for male athletes. Endocrine and metabolic markers have been proposed as quantitative surrogate measures of EA and shown to be linked to the RED-S clinical outcome of stress fractures in runners. In female athletes the clinical sign of regular menstruation demonstrates a functioning H-P ovarian axis, not suppressed by LEA. What about male athletes? Although hypothalamic suppression of the reproductive axis due to LEA can result in low testosterone, high training loads, in presence of adequate EA, can lead to the same negative effect on testosterone concentration.

Sam

Male cyclists present a further level of complexity in assessing EA status. In contrast to runners, stress fracture will not be an early clinical warning sign of impaired bone health resulting from low EA. Furthermore cyclists are already at risk of poor bone health due to the non weight bearing nature of the sport. Nevertheless, traumatic fracture from bike falls is the main type of injury in cycling, with vertebral fracture requiring the longest time off the bike. Chris Boardman, a serial Olympic medal winner in cycling, retired in his early 30s with osteoporosis. In other words, in road cycling, the combined effect of the lack of osteogenic stimulus and LEA can produce clinically significant adverse effects on bone health.

What practical clinical tools are most effective at identifying competitive male cyclists at risk of the health and performance consequences of LEA outlined in the RED-S model? This was the question our recent study addressed. The lumbar spine is a skeletal site known to be most impacted by nutrition and endocrine factors and DXA is recognised as the “gold standard” of quantifying age matched Z score for bone mineral density (BMD) in the risk stratification of RED-S. What is the clinical measure indicative of this established and clinically significant sign of RED-S on lumbar spine BMD? Would it be testosterone concentration, as suggested in the study of runners? Another blood marker? Cycle training load? Off bike exercise, as suggested in some previous studies? Clinical assessment by interview?

Using a decision tree approach, the factor most indicative of impaired age matched (Z score) lumbar spine BMD was sport specific clinical assessment of EA. This assessment took the form of a newly developed sports specific energy availability questionnaire and interview (SEAQ-I). Reinforcing the concept that the most important skill in clinical medical practice is taking a detailed history. Questionnaire alone can lead to athletes giving “correct” answers on nutrition and training load. Clinical interview gave details on the temporal aspects of EA in the context of cycle training schedule: whether riders where experiencing acute intermittent LEA, as with multiple weekly fasted rides, or chronic sustained LEA with prolonged periods of suppressed body weight. Additionally the SEAQ-I provided insights on attitudes to training and nutrition practices.

Cyclists identified as having LEA from SEAQ-I, had significantly lower lumbar spine BMD than those riders assessed as having adequate EA. Furthermore, the lowest lumbar spine BMD was found amongst LEA cyclists who had not practised any load bearing sport prior to focusing on cycling. This finding is of particular concern, as if cycling from adolescence is not integrated with weight bearing exercise and adequate nutrition when peak bone mass (PBM) is being accumulated, then this risks impaired bone health moving into adulthood.

Further extension of the decision tree analysis demonstrated that in those cyclists with adequate EA assessed from SEAQ-I, vitamin D concentration was the factor indicative of lumbar spine BMD. Vitamin D is emerging as an important consideration for athletes, for bone health, muscle strength and immune function. Furthermore synergistic interactions with other steroid hormones, such as testosterone could be significant.

What about the effects of EA on cycling performance? For athletes, athletic performance is the top priority. In competitive road cycling the “gold standard” performance measure is functional threshold power (FTP) Watts/Kg, produced over 60 minutes. In the current study, 60 minute FTP Watts/Kg had a significant relationship to training load. However cyclists in chronic LEA were under performing, in other words not able to produce the power anticipated for a given training load. These chronic LEA cyclists also had significantly lower testosterone concentration. Periodised carbohydrate intake for low intensity sessions is a strategy for increasing training stimulus. However if this acute intermittent LEA is superimposed on a background of chronic LEA, then this can be counter productive in producing beneficial training adaptations. Increasing training load improves performance, but this training is only effective if fuelling is tailored accordingly.

Male athletes can be at risk of developing the health and performance consequences of LEA as described in the RED-S clinical model. The recent study of competitive male road cyclists shows that a sport specific questionnaire, combined with clinical interview (SEAQ-I) is an effective and practical method of identifying athletes at risk of LEA. The temporal dimension of LEA was correlated to quantifiable health and performance consequences of RED-S.

References 

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists  Keay, Francis, Hind, BMJ Open in Sport and Exercise Medicine 2018

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Keay, BJSM 2018

Fuelling for Cycling Performance Science4Performance

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

Treating exercise-associated low testosterone and its related symptoms The Physician and Sports Medicine 2018

Male Cyclists: bones, body composition, nutrition, performance Keay, BJSM 2018

Cyclists: Make No Bones About It Keay, BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Cyclists: How to Support Bone Health?

Synergistic interactions of steroid hormones Keay BJSM 2018

Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis Sports Medicine 2018

 

What is Dance Medicine?

Traditionally dance medicine has been somewhat the poor relation of sports medicine. Why is this the case? There is no doubt that dancers, of whatever genre, require the physical and psychological attributes of athletes. However, dance involves an additional artistic component where ultimately performance on stage is judged not according to a score card as in aesthetic sports, rather on the ability of the dancers to forge an emotional connection with the audience.

As with athletes, injuries are always an important topic for dancers: how to recognise the aetiology of injuries and thus develop prevention strategies. Dance UK have published two reports on national enquiries into the health of dancers. Dance UK has now evolved into the organisation One Dance which includes the National Institute of Dance Medicine and Science (NIDMS). One Dance provides delivery of the Healthier Dancer Programme (HDP) whose talks regularly engage 1500+ dancers and dance professionals per year and which will be a part of the One Dance UK conference at the end of November, an overarching event for the entire dance sector. One Dance holds a list of healthcare professionals with experience and expertise in dance. One Dance is an especially an important resource for independent dancers who will not have access to the provision for those working in larger dance companies.

However, beyond injury management, there are important aspects of the health of dancers which need to be considered, highlighted in an information booklet “Your body, Your risk” from Dance UK. The female athlete triad is well established as a clinical spectrum comprising of disordered eating, menstrual dysfunction and impaired bone health. Indeed impaired bone mineral density many persist even after retirement in female dancers. The recent evolution of the female athlete triad into relative energy deficiency in sports (RED-S) provides an important clinical model. RED-S includes male athletes/dancers, involves multiple body systems and crucially, evidence of detrimental effects on athletic performance is being researched and described. In other words RED-S is not restricted to female dancers/athletes with bone stress injuries.

BalletDials
Integrated periodisation of training, nutrition and recovery support perforamnce

The fundamental cause of RED-S is low energy availability where nutritional intake is insufficient to cover energy requirements for training and resting metabolic rate. In this situation the body goes into energy saving mode, which includes shut down of many hypothalamic-pituitary axes and hence endocrine network dysfunction. As hormones are crucial to backing up adaptations to exercise training, dysfunction will therefore have an effect not just on health, but on athletic performance. In dance, neuromuscular skills and proprioception are key for performance. Hence, of concern is that these skills are adversely impacted in functional hypothalamic amenorrhoea, which together with impaired bone health from RED-S, greatly increases injury risk.

Low energy availability can arise in dance and sport where low body weight confers an aesthetic and/or performance advantage. There is no doubt that being light body weight facilitates pointe work in female dancers and ease of elevation in male dancers. Thus, low energy availability can occur intentionally in an effort to achieve and maintain low body weight. Low energy availability can also be unintentional as a result of increased expenditure from training, rehearsal and performance demands and the practicality of fuelling. This situation is of particular concern for young dancers in training, as this represents a high energy demand state, not just for full time training, additionally in terms of energy demands for growth and development, including attainment of peak bone mass.

Despite the significance of RED-S in terms of negative consequences on health and performance, as outlined by the IOC in the recent consensus update, further work is required in terms of raising awareness, identification and prevention. Fortunately these issues are being addressed with the development of an online educational resource on RED-S for athletes/dancers, their coaches/teachers/parents and healthcare professionals which is backed by British Association of Sport and Exercise Medicine (BASEM) and with input from One Dance and NIDMS. In terms of research to facilitate the proliferation of evidence base in dance medicine, One Dance lists calls for research, whilst NHS NIDMS clinics provide access to clinical dance medicine. The importance of the application of this growing field of dance medicine and science for the health and performance of dancers was recently outlined in an article “Raising the barre: how science is saving ballet dancers“.

On the international stage, the International Association for Dance Medicine & Science (IADMS) strives to promote an international network of communication between dance and medicine. To this end, IADMS will hold its 28th Annual Conference in Helsinki, Finland from October 25-28, 2018. In addition to extensive discussion of dance injuries, there will be presentations on “Sleep and Performance” and “Dance Endocrinology”.

So maybe Dance Medicine and Science is not so much the poor relation of Sports Medicine, rather showing the way in terms of integrating input between dancers, teachers and healthcare professionals to optimise the health of dancers and so enable dancers to perform their full potential.

References

Presentations

Fit to Dance? Report of National inquiry into dancers’ health.

Fit to Dance 2 Dance UK

One Dance

Your body your risk. Dance UK

Fit but fragile. National Osteoporosis Society

Bone mineral density in professional female dancers N. Keay, BJSM

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Dr N Keay BJSM 2018

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine and Science in Sports & Exercise 2017

Dancing through Adolescence Dr N Keay BJSM

Healthy Hormones Dr N Keay BASEM 2018

Dancers, Periods and Osteoporosis, Keay N, Dancers, Periods and Osteoporosis, Dancing Times, September 1995, 1187-1189

A study of Dancers, Periods and Osteoporosis, Keay N, Dance Gazette, Issue 3, 1996, 47

Raising the barre: how science is saving ballet dancers The Guardian 2018

International Association for Dance Medicine and Science Medicine & Science in Sports and Exercise

 

 

Relative Energy Deficiency in Sport (RED-S) 2018 update

What updates are presented in the IOC consensus statement on RED-S 2018?

Prevention

Awareness is the key to prevention. Yet RED-S continues to go unrecognised. Less than 50% of clinicians, physiotherapists and coaches are reported as able to identify the components of the female athlete triad. In a survey of female exercisers in Australia, half were unaware that menstrual dysfunction impacts bone health. Note that these concerning statistics relate to the female athlete triad. Lack of awareness of RED-S in male athletes is even more marked. RED-S as a condition impacting males, as well as females, was described in the initial IOC consensus statement published in 2014. However there is evidence of the occurrence of RED-S in male athletes pre-dating this.

Identification

Identifying an athlete/dancer with RED-S is not always straight forward. In dance or sports where being light weight confers a performance or aesthetic advantage, how can a coach/teacher distinguish between athletes who have this type of physique “naturally” and those who have disordered eating and are at risk of RED-S?  Equally, low energy availability could be a result either of intentional nutrition restriction to control body weight and composition, or an unintentional consequence of not matching an increase in energy expenditure (due to increased training load), with a corresponding increase in energy intake.

Performance effects

Performance is paramount to any athlete or dancer. Apart from physical ability, being driven and determined are important characteristics to achieve success. If weight loss is perceived as achieving a performance advantage, then this can become a competitive goal in its own right: in terms of the individual and amongst teammates. This underlies the interactive effect of psychological factors in the development and progression in the severity of RED-S.

There is both theoretical and practical evidence that short term low energy availability impairs athletic performance as the body is less able to undertake high quality sessions and benefit from the physiological adaptations to exercise. Within day energy deficits have been shown to have adverse effects in both male and female athletes in terms of impact on oestradiol/testosterone and cortisol concentrations. Failure to refuel with carbohydrate and protein promptly after a training session in male runners has been shown to have an adverse effect on bone turnover markers.

To underline the adverse performance effect of low energy availability, a recent study demonstrated that in female athletes, those with functional hypothalamic amenorrhea displayed decreased neuromuscular performance compared to their eumenorrhoeic counterparts. This adverse effect on performance is of particular concern where such skills are crucial in precisely those sports/dance where RED-S is most prevalent. Clearly this situation puts such athletes at increased injury risk, especially if associated with adverse bone mineral density (BMD) due to low energy availability.

Ironically the long term consequences of low energy availability produce adverse effects on body composition: increased fat/lean and reduction in BMD. In other words, the precise opposite effects of what an energy restricted athlete is trying to achieve. In terms of bone health, the lumbar spine is most sensitive to nutrition/endocrine factors (apart from rowers where mechanical loading can attenuate BMD loss at this site in RED-S). Suboptimal BMD is associated with an increased risk of bone injury and therefore impaired performance.

REDs
Keay BJSM 2017

Medical Assessment

Low energy availability is the fundamental issue driving the multi-system dysfunction in the endocrine, metabolic, haematological, cardiovascular, gastrointestinal, immunological and psychological systems in RED-S. However, there are practical issues with directly quantifying energy availability as this is subject to the inaccuracies of reliably measuring energy intake and output. Endocrine and metabolic markers have been shown to more objective indicators of low energy availability, which in turn are correlated to performance outcomes such as bone stress injury in male and female athletes. In the case of female athletes there is an obvious clinical indicator of sufficient energy availability: menstrual cycles. As there is no such obvious clinical sign in male athletes is this why RED-S is less frequently recognised? In both female and male athletes there is some degree of clinical variation: there is no absolute threshold cut off with a set temporal component of low energy availability resulting in amenorrhoea or low testosterone in males. Therefore the IOC recommends that individual clinical evaluation include discussion of nutrition attitudes and practices, combined with menstrual history for females and endocrine markers for male and female athletes will give a very clear indication if an athlete is at risk of/has RED-S.

 

Management

RED-S is a diagnosis of exclusion. Once medical conditions per se have been excluded, RED-S presents a multi-system dysfunction caused by a disrupted periodisation of nutrition/training/recovery. For an athlete the motivation to address these imbalances is to be in a position reach their full athletic potential. This attainment is compromised in RED-S.

Pharmacological interventions are not recommended as first line management in amenorrhoeic athletes. Oral contraception (OCP) masks amenorrhoea with withdrawal bleeds. OCP does not support bone health and indeed may exacerbate bone loss by suppressing further IGF-1. Although transdermal oestrogen, combined with cyclic progesterone does not down regulate IGF-1, nevertheless any hormonal intervention cannot be a long term solution, as bone loss will continue if energy availability is not addressed as a priority.

What next?

The IOC statement suggests further research should include studies with allocation of athletes to intervention groups, with assessment of effects over a substantial time period. Currently a study of competitive male road cyclists over a training/competition season is being undertaken to evaluate the effects of nutrition advice and off bike skeletal loading exercise. Crucially outcome measures will not only be based on bone health and endocrine markers, but measures of performance in terms of power production and race results.

To raise awareness and build support pathways as recommended in the IOC statement,  this is an on going process which requires communication between athlete/dancers, coaches/teachers, parents and healthcare professionals both medical and non medical working with male and female athletes.

References

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

Male Cyclists: bones, body composition, nutrition, performance BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Addiction to Exercise – what distinguishes a healthy level of commitment from exercise addiction? BJSM 2017

Sports Endocrinology – what does it have to do with performance? BJSM 2017

Within‐day energy deficiency and reproductive function in female endurance athletes Scandinavian Journal of Science and medicine in Sports 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine & Science in Sports & Exercise. 49(12):2478–2485, DEC 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Cyclists: Make No Bones About It BJSM 2018

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sports Nutrition and Exercise Metabolism 2017

Part 2: Health, Hormones and Human Performance take centre stage BJSM 2018

Cyclists: How to Support Bone Health?

Healthy Hormones BASEM 2018