Hormones, Health and Human Potential

“Hormones, Health and Human Potential” explains how hormones play a crucial role in determining health. Hormone networks provide the feedback mechanism by which our lifestyle and behaviours enable us to reach our personal potential.

Introduction


Over 2,000 years ago Hippocrates advocated that the “safest way to health” was through “the right amount of nourishment and exercise” for “every individual”. As it turns out Hippocrates was way ahead of his time in articulating the principles of personalised and preventative medicine.

Hormones as the missing link to health


Although Hippocrates understood that lifestyle and behaviours are key to health, he did not know why. We now know that hormones are the key players in this vital role. Hormones are instigators in bringing our DNA to life by determining gene expression. Hormones direct the production of proteins, in the optimal amounts and at the right time. Hormones work as networks to maintain mental and physical health.

Lifestyle factors influencing health through hormones networks


Complex internal negative feedback loops between hormones and the biological variables that they regulate, enable homeostasis for good physiological function. Challenges to homeostasis, due to our interactions with the environment are detected by the hypothalamus, which manages hormone network response. In this way there is another layer of feedback loops between lifestyle behaviours and hormones.

Well-balance lifestyle behaviours, in terms of quantity and timing, support healthy hormone network function, leading us to the “safest way to health”. Conversely, circadian misalignment, where lifestyle choices conflict between internal biochronometers, can lead to hormone dysregulation found in conditions such as metabolic syndrome.

Harnessing hormones as preventative and supportive medicine


A good balance of lifestyle factors can harness hormones as a form of supportive and preventative medicine. This is particularly relevant for type 2 diabetes mellitus and metabolic syndrome. For women, where there are physiological changes in hormones, such as occurs at menopause, attendant symptoms and impacts on long term health can be mitigated by lifestyle as part of the management of menopause. For example, exercise has been shown to have a beneficial effect on temperature regulation, metabolism, body composition, bone health and reducing the risk of breast cancer.

Athlete performance mediated by hormones


Hormones mediate the positive adaptive changes due to exercise training. Understanding these mechanisms can benefit both athletes and patients .

Imbalances in behaviours causing hormone dysregulation


Too little exercise and excess nutrition can lead to hormone dysregulation, seen in metabolic syndrome and type 2 diabetes mellitus. On the other hand, too much of a “good thing” can also cause health and performance issues in exercisers. Relative energy deficiency in sport (RED-S) can occur in exercisers of all ages and levels, where there is either an unintentional or intentional mismatch between energy intake and energy demand. Consequent low energy availability causes hormone network disruption, which in the long-term results in adverse effects on both health and performance .

Conclusions


• Hormone network function plays an important role in mental and physical health
• Hormones are influenced by our lifestyle behaviours of exercise, nutrition and sleep
• The benefits of lifestyle behaviours are derived from the positive adaptive changes driven by hormones
• Imbalances in lifestyle behaviours can cause hormone disruption leading to adverse effects on health and exercise performance

References

Keay N. Health Hormones and Human Potential. Sequoia books. 2022

McCarthy O, Pitt J, Keay N et al Passing on the exercise baton: What can endocrine patients learn from elite athletes? Clinical Endocrinology 2022 96;(6):781-792

Keay N, Francis G Infographic. Energy availability: concept, control and consequences in relative energy deficiency in sport (RED-S) British Journal of Sports Medicine 2019;53:1310-1311.

“Of Mice and Men….”

“We need to treat individual women, not statistics” was the concluding sentence of an insightful BMJ Editorial 2019 [1]

However, as Caroline Criado Perez points out in her recent, science prizing-winning book, Invisible Women, in many instances there are no scientific or medical statistics on women[2].

Mouse
“Where are the females?”

The efficacy of drugs is predominately initially tested in vivo on male cells. So at inception, potentially many medications, which might have been effective in females are discarded at the earliest stage of research, because no effects are observed in male cells. The trend of the default male organism in research follows through into animal experimentation on male mice. Although animal models may not be entirely predictive of effects in humans, certainly the effects in female humans will be even less certain. Does it matter that research is conducted predominately on male tissue, male organisms and men? Thalidomide, specifically one of the optimal isomers, is a drug that had devastating teratogenic effects when taken by women. Indeed, a wide range of potential sex differences in the effects and metabolism of drugs has been reported. Furthermore the action of drugs, including adverse effects, can vary according the phases of the menstrual cycle, due to variations in circulating sex steroids. For example, certain drugs are likely cause arrhythmia in the follicular phase of the menstrual cycle[3]. Yet the effect of many drugs in females is not well understood, as research had not included females, let alone women in different phases of the menstrual cycle.

Why is research focused on males? There is an argument that the menstrual cycle in females is “too complicated” or including women in a study at difference phases of the menstrual cycle “will interfere with results”. Menstrual cycles have been around since women evolved, so this is not a phenomenon that is going to go away anytime soon. Therefore, welcoming the complexity of the intricate choreography of hormones during the menstrual cycle and during the lifetime of a women, is a more constructive approach. Certainly a more acceptable scientific approach is where the objective is to elucidate similarities and differences between men, rather than excluding the female half of the population and assuming no differences in physiology and metabolism exist. Furthermore there are differences between individual women. Individual women will be impacted by fluctuations of hormones during the menstrual cycle in different ways, depending on varying tissue sensitivities to steroids between individuals.

This concept is especially important in sports science where the vast majority of studies are conducted in males. As I outlined in my presentation recently at Barça Innovation Hub, before discussing external factors (training load, nutrition, recovery), researched in males, for female athletes is is vital to take into account internal bio-chronometers[4]. Circadian misalignment leads to suboptimal health and performance[5]. For female athletes, the most important cyclical variation of hormones during the menstrual cycle. Furthermore, these periodic changes in hormones have individual effects. Only when these are recognised can external factors be integrated with internal periodicity. In other words by taking account of individual internal variations, this makes it possible to provide personalised advice. Tracking menstrual cycles provides an important training metric as menstrual cycles are a barometer of healthy hormones[6]. As it becomes easier to track personal health and performance data on a daily basis, both researchers and individual women can gain a better understanding of how female physiology varies over the menstrual cycle. Optimising health and performance for the individual female athlete, makes for a stronger team.

What about in the clinical medical setting? I recently attended an excellent update on acute medicine for medical doctors. An eminent cardiologist presented a series of case studies, including a woman who started experiencing symptoms in the morning, which both she and doctors thought were due to indigestion. Eventually when this “indigestion” had not settled by later afternoon, she attended A&E. She had suffered an extensive myocardial infarction (heart attack). The cardiologist explained that even though she went to a hospital with an on-site primary percutaneous coronary intervention facility, unfortunately due to the long delay in presenting to hospital, the heart muscle had died. The opportunity had been missed to take her into the catheterisation laboratory to restore blood flow and function to the cardiac muscle. He outlined how this delay in diagnosis would have a big impact on her future quality of life and life span. Unfortunately this is not an isolated case. Women are far more likely to be misdiagnosed as not having acute coronary syndrome, when in fact they are indeed suffering a “heart attack”. Why is this? The “typical” presentation of myocardial infarction of central crushing chest pain with radiation to left neck and arm, disseminated to the public and medical students, is in fact only typical for men. Women present with “atypical” symptoms, in other words atypical for men[7]

Even where female specific statistics do exist, the emphasis should be on considering the individual woman in clinical context. The recent BMJ editorial on HRT emphasised providing women with high quality, unbiased information on which women can weigh up their personal risk/benefit outcomes from HRT. As, each woman can experience changes in hormones differently, including those occurring at the menopause; so the emphasis should be on an individual woman’s quality of life rather than epidemiological statistics[1].

There are important differences between mice, men and women.

References

[1] Rymer J, Brian, K, Regan L. HRT and breast cancer risk. BMJ Editorial 2019. dx.doi. org/10.1136/bmj.l5928

[2] Caroline Criado Perez. Royal Society Book Prize. Invisible Women. Publisher Chatto & Windus 2019

[3] Soldin O, Chung S, Mattison D. Sex Differences in Drug Disposition. Journal of Biomedicine and Biotechnology 2011, Article ID 187103 doi:10.1155/2011/187103

[4] N. Keay “Dietary periodisation for female football players” Barca Innovation Hub conference, Camp Nou, Barcelona, 9 October 2019

[5] N.Keay, Internal Biological Clocks and Sport Performance BJSM 2017

[6] N.Keay, What’s so good about Menstrual Cycles? BJSM 2019

[7] Khamis R, Ammari T, Mikhail G. Gender differences in coronary heart disease. Education in Heart. Acute coronary syndromes. BMJ Heart http://dx.doi.org/10.1136/heartjnl-2014-306463

 

 

 

Low Energy Availability in Climbers

Listen into a great discussion I had with Dr Nigel Callender an ex competitive climber and climbing coach about the “elephant in the room” in competitive climbing.

Discussion of Low Energy Availability and RED-S

As a gravitational sport, being a light-weight climber confers a performance advantage. However, being alert to low energy availability and the clinical consequences of RED-S on health and performance is important for climbers. With climbing being included the next Olympics, then hopefully this will raise awareness of being alert to athletes at risk of low energy availability and RED-S.

IMG_0175

Insights from Dr Nigel Callender, sports scientist turned medical doctor (anaesthetics/critical care trainee) an active researcher, largely into the exercise physiology aspects of climbing and ex-competitor, having represented Ireland at international level and been British bouldering champion before shoulder injuries ended that. Sport climbing is included in the 2020 Tokyo summer games in its three competitive disciplines; bouldering, lead climbing and speed climbing. Each sub-discipline has a slightly different athlete profile and physiological demands, but all are obviously under the heading of gravity dependent sports. Current participation figures put yearly indoor climbing participation at around the one million mark in the UK and it is said to be one of the fastest growing sports worldwide. The sport is being recognised as a great way to improve overall health and fitness, with recent papers citing it as a useful rehab activity for many physical and mental health conditions and also as a health promotion tool.

Although climbing has been a formal competitive sport in some sense since the late 80’s, it still lacks much in the way of formal training and medical guidelines. Being a gravity dependent sport, strength to weight ratio is important, however Dr Callender and his colleagues are seeing a high incidence of restrictive eating patterns at all levels of the sport and a lack of awareness around the performance impairments and health risks associated with a significant or prolonged negative energy balance in some athletes.

The Outdoor Athlete Podcast is a bit of a winter project that came about to establish a gold-standard resource, driven by credible experts in their relevant fields, as an attempt to provide high-quality and evidence-based information amongst the confusing advice that is now the internet. It’s free and always will be and it was inspired by the BJSM Podcasts though broadly aiming at ‘Outdoor Athletes’ e.g. Climbers, Fell/Trail runners, Mountain bikers and anyone happy to listen.

For more information on climbing in the UK, including competition climbing see http://www.thebmc.co.uk

How to Identify Male Cyclists at Risk of RED-S?

Relative energy deficiency in sport (RED-S) is a clinical model that describes the potential adverse health and performance consequences of low energy availability (LEA) in male and female athletes. Identification of athletes at risk of LEA can potentially prevent these adverse clinical outcomes.

Athletes at risk of RED-S are those involved in sports where low body weight confers a performance or aesthetic advantage. In the case of competitive road cycling, being light  weight results in favourable power to weight ratio to overcome gravity when cycling uphill. How can male cyclists at risk of LEA be effectively identified in a practical manner?

Energy availability (EA) is defined as the residual energy available from dietary intake, once energy expenditure from exercise training has been subtracted. This available energy is expressed as KCal/Kg fat free mass (FFM). A value of 45 KCal/Kg FFM is roughly equivalent to basal metabolic rate, in other words the energy required to sustain health. In order to quantify EA, accurate measurements of energy intake and expenditure, and FFM assessed from dual X ray absorptiometry (DXA), need to be undertaken. However this is not practical or feasible to undertake all these measurements outside the research setting. Furthermore, methodology for assessing energy intake and expenditure is laborious and fraught with inaccuracies and subjectivity in the case of diet diaries for “free living athletes“. Even if a value is calculated for EA, this is only valid for the time of measurement and does not give any insights into the temporal aspect of EA. Furthermore, an absolute EA threshold has not been established, below which clinical symptoms or performance effects of RED-S occur.

Self reported questionnaires have been shown to be surrogates of low EA in female athletes. However there are no such sport specific questionnaires, or any questionnaires for male athletes. Endocrine and metabolic markers have been proposed as quantitative surrogate measures of EA and shown to be linked to the RED-S clinical outcome of stress fractures in runners. In female athletes the clinical sign of regular menstruation demonstrates a functioning H-P ovarian axis, not suppressed by LEA. What about male athletes? Although hypothalamic suppression of the reproductive axis due to LEA can result in low testosterone, high training loads, in presence of adequate EA, can lead to the same negative effect on testosterone concentration.

Sam

Male cyclists present a further level of complexity in assessing EA status. In contrast to runners, stress fracture will not be an early clinical warning sign of impaired bone health resulting from low EA. Furthermore cyclists are already at risk of poor bone health due to the non weight bearing nature of the sport. Nevertheless, traumatic fracture from bike falls is the main type of injury in cycling, with vertebral fracture requiring the longest time off the bike. Chris Boardman, a serial Olympic medal winner in cycling, retired in his early 30s with osteoporosis. In other words, in road cycling, the combined effect of the lack of osteogenic stimulus and LEA can produce clinically significant adverse effects on bone health.

What practical clinical tools are most effective at identifying competitive male cyclists at risk of the health and performance consequences of LEA outlined in the RED-S model? This was the question our recent study addressed. The lumbar spine is a skeletal site known to be most impacted by nutrition and endocrine factors and DXA is recognised as the “gold standard” of quantifying age matched Z score for bone mineral density (BMD) in the risk stratification of RED-S. What is the clinical measure indicative of this established and clinically significant sign of RED-S on lumbar spine BMD? Would it be testosterone concentration, as suggested in the study of runners? Another blood marker? Cycle training load? Off bike exercise, as suggested in some previous studies? Clinical assessment by interview?

Using a decision tree approach, the factor most indicative of impaired age matched (Z score) lumbar spine BMD was sport specific clinical assessment of EA. This assessment took the form of a newly developed sports specific energy availability questionnaire and interview (SEAQ-I). Reinforcing the concept that the most important skill in clinical medical practice is taking a detailed history. Questionnaire alone can lead to athletes giving “correct” answers on nutrition and training load. Clinical interview gave details on the temporal aspects of EA in the context of cycle training schedule: whether riders where experiencing acute intermittent LEA, as with multiple weekly fasted rides, or chronic sustained LEA with prolonged periods of suppressed body weight. Additionally the SEAQ-I provided insights on attitudes to training and nutrition practices.

Cyclists identified as having LEA from SEAQ-I, had significantly lower lumbar spine BMD than those riders assessed as having adequate EA. Furthermore, the lowest lumbar spine BMD was found amongst LEA cyclists who had not practised any load bearing sport prior to focusing on cycling. This finding is of particular concern, as if cycling from adolescence is not integrated with weight bearing exercise and adequate nutrition when peak bone mass (PBM) is being accumulated, then this risks impaired bone health moving into adulthood.

Further extension of the decision tree analysis demonstrated that in those cyclists with adequate EA assessed from SEAQ-I, vitamin D concentration was the factor indicative of lumbar spine BMD. Vitamin D is emerging as an important consideration for athletes, for bone health, muscle strength and immune function. Furthermore synergistic interactions with other steroid hormones, such as testosterone could be significant.

What about the effects of EA on cycling performance? For athletes, athletic performance is the top priority. In competitive road cycling the “gold standard” performance measure is functional threshold power (FTP) Watts/Kg, produced over 60 minutes. In the current study, 60 minute FTP Watts/Kg had a significant relationship to training load. However cyclists in chronic LEA were under performing, in other words not able to produce the power anticipated for a given training load. These chronic LEA cyclists also had significantly lower testosterone concentration. Periodised carbohydrate intake for low intensity sessions is a strategy for increasing training stimulus. However if this acute intermittent LEA is superimposed on a background of chronic LEA, then this can be counter productive in producing beneficial training adaptations. Increasing training load improves performance, but this training is only effective if fuelling is tailored accordingly.

Male athletes can be at risk of developing the health and performance consequences of LEA as described in the RED-S clinical model. The recent study of competitive male road cyclists shows that a sport specific questionnaire, combined with clinical interview (SEAQ-I) is an effective and practical method of identifying athletes at risk of LEA. The temporal dimension of LEA was correlated to quantifiable health and performance consequences of RED-S.

References 

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists  Keay, Francis, Hind, BMJ Open in Sport and Exercise Medicine 2018

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Keay, BJSM 2018

Fuelling for Cycling Performance Science4Performance

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

Treating exercise-associated low testosterone and its related symptoms The Physician and Sports Medicine 2018

Male Cyclists: bones, body composition, nutrition, performance Keay, BJSM 2018

Cyclists: Make No Bones About It Keay, BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Cyclists: How to Support Bone Health?

Synergistic interactions of steroid hormones Keay BJSM 2018

Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis Sports Medicine 2018

 

Synergistic Interactions of Steroid Hormones

Slide1

The action of the sun on skin is the most effective way of making vitamin D. However, even walking around outside naked for 5 hours every day during UK winter months is not sufficient to make adequate vitamin D. Therefore, much to the relief of the audience at the recent BASEM Spring conference, this was not a strategy recommended by Dr Roger Wolman.

Vitamin D is a fat soluble steroid hormone. The majority of which is synthesised in the skin when exposed to ultraviolet B in sunlight, with a small contribution from dietary sources: this vitamin D3 molecule is then hydroxylated twice in the liver and then kidney to produce the metabolically active form of vitamin D. This activated steroid hormone binds to vitamin D receptors in various tissues to exert its influence on gene expression in these cells. The mono hydroxylated form of vitamin D is measured in the serum, as this has a long half life.

Does it matter having low levels of circulating vitamin D during winter months? What are the solutions if moving to warmer climates during the winter is (unfortunately) not feasible? What are the other hormones interact with vitamin D?

What are the beneficial effects of vitamin D, particularly in the athletic population?

Bone

Rickets and osteomalacia are conditions where vitamin D deficiency results in bone deformities and radiographic appearances are characterised by Looser zones, which in some ways are similar in appearance to stress fractures.

In a large prospective study of physically active adolescent girls, stress fracture incidence was found to have an inverse relationship with serum vitamin D concentrations. In adult female Navy recruits monitored during an 8 week training programme, those on vitamin D supplementation had a 20% reduction in stress fracture. However, oestrogen status was a more powerful risk factor at 91% in those recruits reporting amenorrhoea. Vitamin D is, itself, is a steroid hormone with range of systemic effects. As will be discussed below, its interaction with the sex steroid oestrogen has an important effect on bone turnover.

Immunity

Although sanatoriums, for those suffering with tuberculosis, were based on providing patients with fresh air, any beneficial effect was probably more due to vitamin D levels being boosted by exposure to sunlight. Certainly there are studies demonstrating the inhibitory effect of vitamin D on on slow growing mycobacteria, responsible for TB. What about the influence of vitamin D on other types of infection? In a recent publication, evidence was presented that supplementation with vitamin D prevented acute respiratory tract infections. This effect was marked in those with pre-existing low levels of vitamin D. In a study of athletes a concentration of 95 nmol/L was noted at the cut off point associated with more or less than one episode of illness. In another randomised controlled study of athletes, those supplemented with 5,000IU per day of vitamin D3 during winter displayed higher levels of serum vitamin D and had increased secretion of salivary IgA, which could improve immunity to respiratory infections.

Muscle

There is evidence that supplementing vitamin D3 at 4,000IU per day has a positive effect on skeletal muscle recovery in terms of repair and remodelling following a bout of eccentric exercise. In the longer term, dancers supplemented with 2,000IU over 4 months reported not only reduction in soft tissue injury, but an increase in quadriceps isometric strength of 18% and an increase of 7% in vertical jump height.

Synergistic actions of steroid hormones

No hormone can be considered in isolation. This is true for the network interaction effects between the steroid hormones vitamin D and oestrogen. In a study of professional dancers, there was found to be significant differences in serum vitamin D concentrations in dancers from winter to summer and associated reciprocal relationship with parathyroid hormone (PTH). In situations of vitamin D deficiency this can invoke secondary hypoparathyroidism. Although low levels of vitamin D were observed in the dancers, this was not a level to produce this condition. However, there was an increase in soft tissue injury during the winter months that could, in part, be linked to low vitamin D levels impacting muscle strength.

The novel finding of this study was that female dancers on the combined oral contraceptive pill  (OCP) showed significant differences, relative to their eumenorrhoeic counterparts not on the OCP, in terms of higher levels of vitamin D and associated reductions of bone resorption markers and PTH. The potential mechanism could be the induction by the OCP of liver enzymes to increase binding proteins that alter the proportion of bound/bioactive vitamin D.

This interaction between steroid hormones oestrogen and vitamin D could be particularly significant in those in low oestrogen states such as postmenpoausal women and premenarchal girls. Menarche can be delayed in athletes, so is there a case for vitamin D supplementation in young non-menstruating athletes? What is the situation for men? Do testosterone and vitamin D have similar interactions and therefore implications for male athletes with RED-S, where testosterone can be low?

Vitamin D is not simply a vitamin. It is a steroid hormone with multi-system effects and interactions with other steroid hormones, such as sex steroids, which are of particular relevance to athletes.

References

BASEM Spring Conference 2018 “Health, Hormones and Human Performance”

BASEM Spring Conference 2018 Part 2 “Health, Hormones and Human Performance”

Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits JBMR 2009

Vitamin D, Calcium, and Dairy Intakes and Stress Fractures Among Female Adolescents Arch Pediatr Adolesc Med 2012

A Single Dose of Vitamin D Enhances Immunity to Mycobacteria American Journal of Respiratory and Critical Care Medicine 2007

Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data BMJ 2017

Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes Exerc Immunol Rev. 2013

The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes J Sports Sci. 2016

A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy American Journal of Physiology 2015

The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study Journal of Science and Medicine in Sport 2014

Vitamin D status in professional ballet dancers: Winter vs. summer J Science and Medicine in Sport 2013

Health, Hormones and Human Performance Part 2

Endocrine and Metabolic aspects of Sports and Exercise Medicine are crucial determinants of health and human performance, from reluctant exerciser through to elite athlete and professional dancer. This is what the recent BASEM spring conference set out to demonstrate. The previous blog described functional disruption of Endocrine networks caused by non-integrated periodisation of the three key lifestyle factors of exercise/training, nutrition and recovery/sleep, can lead to adverse effects on health and athletic performance.

Slide1
Integrated periodisation of exercise, nutrition, recovery for optimisation of health and performance (Keay BJSM 2017)

Grace, aesthetic line and ethereal quality belie the athletic prowess required in ballet. What are the Endocrine, metabolic and bone health consequences for this unique group of athletes? Dr Roger Wolman (Medical Advisor to National Institute for Dance Medicine and Science) returned to the important topic of insufficient energy availability in sport/dance where being lightweight confers a performance advantage, resulting in dysfunction in multiple endocrine axes. Dr Wolman discussed his recent research studies in dancers revealing an intriguing synergistic action between oestrogen and vitamin D, which is itself a steroid hormone. Evidence was presented to demonstrate how being replete in vitamin D has beneficial effects on bone, immunity and muscle function. Thus it is key in preventing injury and supporting health in athletes, with particular relevance in premenarchal and postmenopausal women, who are in relative oestrogen deficient states. This presentation will certainly change my clinical practice and, I am sure, that of many in the audience, in ensuring that athletes/patients are vitamin D replete. This may have to be achieved in the form of strategic use of sports informed vitamin D supplementation, given that even walking naked for 5 hours a day outside during UK winter, would not stimulate enough vitamin D production. Therefore, to the relief of many in the audience, Dr Wolman did not recommend this strategy.

Dr Kate Ackerman (member of RED-S IOC working group) explained why we should all tap into our inner endocrinologist. Sport and Exercise Medicine (SEM) goes far beyond diagnosing and treating injury. Is there any underlying endocrine cause for suboptimal health, performance or injury? Be this an endocrine diagnosis that should not be missed, or a functional endocrine dysfunction due to relative energy deficiency in sports (RED-S). Dr Ackerman explained the importance of the multidisciplinary team in both identifying and supporting an athlete experiencing the consequences of RED-S. New research from Dr Ackerman’s group was presented indicating the effects of RED-S on both health and athletic performance.

Females now have combative roles alongside their male counterparts. What are the implications of this type of intensive exercise training? Dr Julie Greaves (Research Director of the ministerial women in ground close combat research programme) presented insightful research revealing that differences in the geometry of bone in men and women can predispose towards bone stress injury and account for increased incidence in this type of injury in female recruits.

Lunchtime discussion and debate was focused on the determinants of athletic gender, lead by Dr Joanna Harper and Professor Yannis Pitsiladis (International Federation of Sports Medicine). Rather than relying on genetic sex, testosterone concentration was proposed as the criteria for determining whether an athlete competes in male or female events. That testosterone concentration is linked to performance was demonstrated in a study published last year in the BMJ where female athletes in the upper tertile of testosterone were shown to have a performance advantage in certain strength based track and field disciplines. This could potentially be an objective, functional metric used to determine sporting categories for transgender and intersex athletes. The only current uncertainty is how previously high levels of testosterone seen in male, or intersex athletes would have already had an impact on physiology, if this athlete then wished to compete as female and therefore lower testosterone levels with medication.

Nutrition is a key component in optimising health and performance through the Endocrine system. Dr Sophie Killer (English Institute of Sport) explained practical implications for athletes. In a study stimulating a training camp, there were distinct differences between athletes on different regimes of carbohydrate intake in terms of endocrine markers and psychological effects. Those athletes on restricted carbohydrate intake fared worse.

Insulin insensitivity is the underlying pathological process in developing type 2 diabetes mellitus (T2DM) and metabolic syndrome. What is the crucial lifestyle intervention to combat this? Dr Richard Bracken (Swansea University) presented the science behind why and how exercise improves blood glucose control and therefore ultimately risk of developing the macro and microvascular complications of diabetes. T2DM is an increasing health issue in the population, which has to be addressed beyond reaching for the prescription pad for medication. Dr Bracken outlined some effective strategies to encourage the reluctant exerciser to become more active. Having worked myself in NHS diabetic clinics over many years, this was a key presentation at the conference to demonstrate that SEM goes far beyond a relatively small group of elite athletes. Highlighting the crucial role of physical activity in supporting health and performance through optimisation of endocrine networks: uniting the elite athlete and the reluctant exerciser.

One road to Rome
One Road to Rome (BJSM Keay 2017)

Motivate2Move initiative aims to shift the emphasis from treating disease, to preventing disease. Dr Brian Johnson presented the excellent resource for healthcare professionals to encourage, motivate and educate patients in order to consider exercise as an effective and enjoyable way to improve health.

Hormones play a key role in health and human performance, applicable to all levels of exerciser from reluctant exerciser to elite athlete.

FactorsWordCloud4

References

Health, Hormones and Human Performance BASEM Spring Conference

Video of presentation on Endocrine and Metabolic aspects of Sport and Exercise Medicine from BASEM Spring Conference

Sports Endocrinology – what does it have to do with performance? Keay BJSM 2017

Lifestyle Choices for optimising health: exercise, nutrition, sleep Keay BJSM 2017

One road to Rome: Exercise Keay, BJSM 2017

 

 

Healthy Hormones

Is your training in tune with your hormones and nutrition to optimise your athletic performance?

Hormones are internal chemical messengers regulating all aspects of your health and athletic performance. Discussed at recent BASEM conference “Health Hormones and Human Performance”

webmd_rm_photo_of_porous_bones
Bone health can be at risk if hormone status not optimal

How? To enable your hormones to do the best job they can for your health and sport performance, you need to find a balance between what, how much and when you train, eat and sleep. In the diagram below, this represents staying on the healthy green plateau. Too much, or too little of any of these choices can lead to imbalances and tipping off the green plateau into the red, less healthy peripheries.

Slide1
Integrated periodisation of training, nutrition and recovery for optimal health and performance (Keay, BJSM 2017)

What? Imbalances between training load, nutrition and recovery can cause problems in the Endocrine system: the whole network of hormone interactions throughout your body. The bottom line is that if insufficient energy is provided through nutrition to cover both your training demands and the “housekeeping” activities within the body to keep you alive, then your body goes into energy saving mode. This situation is called relative energy deficiency in sports (RED-S) and has the potential to adversely impact one or more of the important systems in your body vital for optimal health and performance.

RED-S has evolved from the female athlete triad described in 1980s by Barbara Drinkwater in NEJM, where although female runners were consuming same dietary intake, those with higher training load were more likely to have menstrual dysfunction and low bone mineral density. Since this original description it has become obvious that the reproductive axis is just one of several hormone networks to be impacted by low energy availability and that RED-S also impacts the other half of the population: men.

red-s
Potential Multisystem effects of RED-S (IOC statement BJSM 2014)

Why? Suboptimal levels of energy availability to support health and performance can arise unintentionally, for example with increased training loads and/or times of growth and development in young athletes. Intentionally restrictive eating patterns can also be the cause of RED-S, particularly in sports/dance where low body weight confers a performance or aesthetic advantage. It is an indisputable fact that in order cycle up a mountain you need to overcome gravity and produce high watts/kg. Equally it is pretty impossible to do pointe work, let alone 32 fouttées en tournant en pointe unless you are a lightweight dancer. However if this at the expense of disrupting your hormones, then the advantage of being low body weight will be lost.

How to know? How to know if you, a teammate or a fellow athlete is at risk of RED-S? If you are a female athlete then your hormones are in balance if you are having regular periods (this does not include withdrawal bleeds as result of being on the oral contraceptive pill). Any woman of reproductive age from 16 years to the menopause should have regular periods (unless pregnant). Regular menstruation acts as the barometer of healthy hormones in women. If this is not the case, whether you are an athlete or not, you need to get this checked out medically to exclude underlying medical conditions. Having excluded these, then you need to review the integrated periodisation of training, nutrition and recovery. In male athletes there is not such an obvious sign that your hormones are at healthy levels. However recurrent injury/illness/fatigue can be warning signs. The diagram below shows all the potential adverse effects of RED-S on performance. Be aware that you do not have to have all, or indeed be aware of any of these effects if you develop RED-S.

Screen Shot 2017-05-20 at 19.16.28
Potential Performance effects of RED-S (IOC statement BJSM 2014)

So What? If you are an athlete/dancer, you may be thinking that none of this applies to you. You are feeling and performing fine. Maybe you have not yet experienced any of the detrimental effects of RED-S. However, you will never know how good an athlete you could be and whether you truly are performing to your full potential unless you put yourself in the best position in terms of your hormones to achieve this goal.

performance-potential
Suboptimal performance as result of RED-S (Keay, BJSM 2017)

Key Points

• Insufficient nutrition intake (quantity and quality), whether intentional or not, results in RED-S and multiple hormonal disruptions

• RED-S has detrimental health and athletic performance consequences in both the short and the long term

• Some consequences of RED-S are irreversible for example poor bone health, unless intervention is swift

Check points

• Are you suffering with frequent injuries/fatigue/illness over last 3 months or more?

• Female athletes: if 16 years or older have your periods not started? Have you missed more than 3 consecutive periods?

If yes to any of above, seek medical advice from someone with experience Sports Endocrinology. Now! The longer you leave the situation the harder it will be to rectify. Initially underlying Endocrine conditions per se have to be ruled out. RED-S is a functional dysfunction of the Endocrine system, so a diagnosis of exclusion. Having established RED-S as the diagnosis, monitoring Endocrine markers can be very helpful as these are examples of objective metrics in monitoring energy availability and therefore response to optimising integrated periodisation of nutrition, training and recovery.

Slide1
Integrated periodisation of key training factors support healthy hormones to drive improvements in performance

What to do? Don’t ignore! Although you may think you are fine, if your hormones are not working for you, then you will never reach your full potential as an athlete/dancer. For female athletes having regular periods means your hormones are in healthy ranges and this is normal. Not starting and/or missing periods is not healthy, for any woman.

For both male and female athletes, if you are experiencing recurrent injury, fatigue or illness, you need to get this checked out. There may be a simple explanation such as viral infection, low vitamin D or iron. However it may be that the underlying reason is due to hormone issues.

If you are an athlete, coach, teacher or parent and concerned that you/an athlete in your care has not got the balance right to optimise health and athletic performance, then a 3 way discussion will help and support the decision to seek medical advice as appropriate.

References

Lifestyle Choices for optimising health: exercise, nutrition, sleep Keay, BJSM 2017

Optimal health: including female athletes! Part 1 BJSM 2017

Optimal health: including male athletes! Part 2 BJSM 2017

Optimal Health: Especially Young Athletes! Part 3 BASEM 2017

Optimal Health: For All Athletes! Part 4 BASEM 2017

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sport Nutrition and exercise Metabolism 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Presentation at BASEM conference “Health, Hormones and Human Performance”

 

Health, Hormones and Human Performance Part 1

How hormones determine health and athletic performance

Endocrine and Metabolic aspects of Sports and Exercise Medicine are crucial determinants of health and human performance, from reluctant exerciser through to elite athlete and professional dancer. This is what I set out to demonstrate as the chair of the recent British Association of Sport and Medicine conference, with insightful presentations from my colleagues whom I had invited to share their research and practical applications of their work. The audience comprised of doctors with interest in sport and exercise medicine, representatives from the dance world, research scientists, nutritionists, physiotherapists, coaches and trainers. In short, all were members of multi-disciplinary teams supporting aspiring athletes. The importance of the conference was reflected in CDP awards from FSEM, BASES, Royal College of Physicians (RCP), REP-S and endorsement for international education from BJSM and National Institute of Dance Medicine and Science (NIDMS).

Exercise is a crucial lifestyle factor in determining health and disease. Yet we see an increasing polarisation in the amount of exercise taken across the general population. At one end of the spectrum, the increasing training loads of elite athletes and professional dancers push the levels of human performance to greater heights. On the other side of the spectrum, rising levels of inactivity, in large swathes of the population, increase the risk of poor health and developing disease states. Which fundamental biological processes and systems link these groups with apparently dichotomous levels of exercise? What determines the outcome of the underlying Endocrine and metabolic network interactions? How can an understanding of these factors help prevent sports injuries and lead to more effective rehabilitation? How can we employ Endocrine markers to predict and provide guidance towards beneficial outcomes for health and human performance?

If you weren’t able to come and participate in the discussion, these are some topics presented. My opening presentation (see video below) set the scene, outlining why having an optimally functioning Endocrine system is fundamental to health and performance. Conversely, functional disruption of Endocrine networks occurs with non integrated periodisation of the three key lifestyle factors of exercise/training, nutrition and recovery/sleep, which can lead to adverse effects on health and athletic performance.

In the case of an imbalance in training load and nutrition, this can manifest as the female athlete triad, which has now evolved into relative energy deficiency in sports (RED-S) in recognition of the fact that Endocrine feedback loops are disrupted across many hormonal axes, not just the reproductive axis. And, significantly, acknowledging the fact that males athletes can also be impacted by insufficient energy availability to meet both training and “housekeeping” energy requirements. Why and how RED-S can affect male athletes, in particular male competitive road cyclists, was discussed, highlighting the need for further research to investigate practical and effective strategies to optimise health and therefore ultimately performance in competition.

A degree of overlap and interplay exists between RED-S (imbalance in nutrition and training load), non functional over-reaching and over-training syndrome (imbalances in training load and recovery). Indeed research evidence was presented suggesting that RED-S increases the risk of developing over-training syndrome. In these situations of functional disruption of the Endocrine networks, underlying Endocrine conditions per se should be excluded. Case studies demonstrated this principle in the diagnosis of RED-S. This is particularly important in the investigation of amenorrhoea. All women of reproductive age, whether athletes or not, should have regular menstruation (apart from when pregnant!), as a barometer of healthy hormones. Indeed, since hormones are essential to drive positive adaptations to exercise, healthy hormones are key in attaining full athletic potential in any athlete/dancer, whether male or female. Evidence was presented from research studies for the role of validated Endocrine markers and clinical menstrual status in females as objective and quantifiable measures of energy availability and hence injury risk in both male and female athletes.

Slide1
Triumvirate of external factors impacting Endocrine system and hence performance

Alongside training metrics, if female athletes recorded menstrual pattern (as Gwen Jorgensen recently showed on her Training Peaks) and all athletes kept a biological passport of selected Endocrine markers; this could potentially identify at an early stage any imbalances in the triumvirate of training load, nutrition and recovery. Pre-empting development of RED-S or over-training syndrome, supports the maintenance of healthy hormones and hence optimal human performance.

Look out for presentations from speakers which will be uploaded on BASEM website shortly.

References

Video of presentation on the Endocrine and Metabolic Aspects of Sports and Exercise Medicine BASEM conference “Health, Hormones and Human Performance”

Study of hormones, body composition, bone mineral density and performance in competitive male road cyclists Investigation of effective and practical nutrition and off bike exercise interventions

Sports Endocrinology – what does it have to do with performance? Keay BJSM 2017

 

 

 

Cyclists: How to Support Bone Health?

Screen Shot 2018-02-25 at 16.51.20.png
Supporting Bone Health

The wonderfully named “hip hop” study was conducted to investigate whether hopping would improve the strength of the hip bone in older males. You may be wondering how this is relevant to male cyclists in their twenties. Yet, in a recent pilot study, some male cyclists were found to have areas of the skeleton that were below average bone mineral mineral (BMD) for an 85 year old man. This finding of low BMD in cyclists was confirmed in a recent BBC programme where Dr Karen Hind at Leeds Beckett University presented the differences in BMD across sports. Keen-eyed cyclists amongst you will have recognised Ed Clancy from JLT Condor representing cyclists, though these findings will be relevant to all levels of competitive cyclists.

So maybe research with the same aims as the “hip hop” study is exactly what needs to be conducted amongst male cyclists to investigate practical and effective ways of supporting bone health and ultimately preventing injury and optimising performance. This is aim of forthcoming research in collaboration with Dr Hind.

webmd_rm_photo_of_porous_bones
Microscopic structure of bone

In common with other sports, cycling is an excellent form of exercise, driving positive adaptations throughout the body, such as improved cardiovascular fitness, body composition, muscular strength and endurance together with beneficial psychological effects. However, unlike many other forms of exercise, cycling does not encourage beneficial adaptations to the full skeletal system. This is due to a lack of mechanical osteogenic (bone building) stimuli provided in cycling, particularly at the lumbar spine. In competitive road cycling, low body mass confers a performance advantage, so restrictive or inconsistent nutrition can lead to relative energy deficiency in sport (RED-S). The consequent Endocrine system dysfunction can compound the negative effects on bone health of a non-load-bearing sport.

In a study of masters cyclists, decreases in BMD at all sites were more marked than in sedentary individuals. Some cyclists went from being osteopenic to osteoporotic; a rare case where exercise has a negative impact on a system in the body. Does this matter? Like all athletes, cyclists are more concerned with current athletic performance than warnings about future issues, such as osteoporosis and fracture. Yet, out of athletes across all sports, cyclists should perhaps be the most concerned. In the case of runners, suboptimal bone heath and associated RED-S may well present as a stress fracture. In the case of cyclists by the nature of non-load bearing exercise, they can push for longer with suboptimal bone and nutritional status. The full extent of any bone health issues may only come to light as result of a bike crash. Looking at the time off from injury in elite cyclists, the majority are due to fracture, with vertebral fractures often requiring long duration of recovery compared to other sites.

Maybe maintenance of BMD for adult cyclists would be realistic goal. How can this be achieved?

Multidirectional, dynamic loading patterns have been shown to produce the most positive skeletal responses. This is seen in the different site specific effects of sports, where changes of direction or plane of movement provide maximal mechanical osteogenic stimulus. Jumping and hopping have been shown to be good for bone health in premenopausal women, where brief high impact exercises were found to be beneficial for the bone mineral density (BMD) of the femoral neck of the hip.

What about targeting the lumbar spine, which is the site most at risk in cyclists? In young children, a few mechanical loading cycles of two-footed jumping from a small step improved BMD at lumbar spine compared with those that did not perform this jumping exercise. However bone is at its most responsive in childhood and skeletal loading has a more long term effect on both microarchitecture and BMD than when performed as an adult. Nevertheless, even in adulthood bone is still a dynamic tissue, able to adapt to loading stresses. Resistance training seems to be the most effective way of providing mechanical osteogenic stimulus to the lumbar spine with an additional indirect osteogenic effect of muscle pulling on bone. For example rowers have site-specific increases in BMD at the lumbar spine. In a recent study, resistance training was found to improve BMD in male distance runners with similar levels of testosterone and bone markers. This concurs with recent pilot study of cyclists, where those performing current resistance training or with recent history of participating in other sports, such as rugby or rowing, fared better in terms of BMD. In other words, the improvement in BMD mediated via mechanical rather than Endocrine effects.

Nevertheless, any form of skeletal-loading exercise will not produce the expected beneficial osteogenic effect, if performed in suboptimal nutritional status. Sufficient quantity and quality of nutrition are required to prevent RED-S. Specific nutritional factors, such as vitamin D, calcium and polyphenols, are recognised to be important in bone health. Boron is also described as decreasing bone resorption by stabilising and extending the half-life of vitamin D and improving sex steroid availability. Whilst high intake of caffeine, which can accumulate if athletes take on board caffeine gels, has a negative impact on BMD. Optimal nutritional status will in turn support the Endocrine system to mediate advantageous adaptations to exercise exercise, including bone health.

How can cyclists optimise bone health and performance on the bike with consistent and targeted skeletal-loading exercise and nutritional strategies? Watch this space! A study is planned to investigate practical and effective strategies to achieve this. No on bike hip hop dance required.

In meantime there will be more discussion on “Health, Hormones and Human Performance” at the BASEM conference 22 March. All welcome, including athletes and coaches, alongside healthcare professional working with athletes.

References

Male Athletes: the Bare Bones of Cyclists

Cyclists: Make No Bones About It BJSM 2018

Which type of exercise gives you the strongest bones? BBC

Studies

Male Cyclists: Bones, Body composition, Nutrition, Performance BJSM 2018

Longitudinal Changes in Bone Mineral Density in Male Master Cyclists and Nonathletes The Journal of Strength & Conditioning Research 2011

A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women  Osteoporosis International 2012

Jumping Improves Hip and Lumbar Spine Bone Mass in Prepubescent Children: A Randomized Controlled Trial JBMR 2001

Review Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis Journal of Science and Medicine in Sport 2016

Resistance training is associated with higher bone mineral density among young adult male distance runners independent of physiological factors The Journal of Strength & Conditioning Research 2018

Relative Energy Deficiency in Sports (RED-S) Practical considerations for endurance athletes

Nothing Boring About Boron Integrated Medicine 2015

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Cyclists: Make No Bones About It

Competitive cyclists are potentially at risk of suboptimal bone health. Although cycling is excellent for cardiovascular fitness, this type of non skeletal loading exercise does not mechanically stimulate osteogenesis (bone formation). This situation of low mechanical osteogenic stimulus to build bone can be compounded by restrictive eating patterns and associated hormone dysfunction of relative energy deficiency in sports (RED-S).

In a recent pilot study 7/10 competitive cyclists (Cat 2 and above) had low age-matched bone mineral density (BMD) in the lumbar spine. This is comparable to another study where 15/28 male cyclists training over eight hours a week were found to have low BMD for their age and were therefore at risk of low trauma fracture. However, cyclists with a lower training volume (Cat 4) did not fair so badly in terms of BMD, due to higher body mass index (BMI) and fat mass. Although greater body mass mechanically loads the skeleton, the downside is that you need to generate more power to get up a hill.

Why is cycling unique compared to other sports where an important adaptation to training is to improve, not impair, bone health? What are the practical solutions to prevent this potential negative effect of cycle training?

fullsizeoutput_2b8
Site Specific Effects on Bone Mineral Density

The illustration shows how different sports exert site specific effects on the bone mineral density of the skeleton. In general terms, hip femoral neck BMD is more dependent on mechanical loading osteogenic stimuli, whereas lumbar spine BMD is more dependent on nutritional and Endocrine status.

What are the most effective mechanical osteogenic stimuli? Evidence from animal models demonstrates that bone responds to exercise that is dynamic, non-repetitive and unpredictable. Load and repetitions are not such important factors. This is shown in a study of track and field athletes, where sprinters were found to have higher BMD at load bearing sites of the skeleton than long distance runners due to a local loading effect rather than a systemic effect associated with repetitive loading nature of longer distance running. The other important consideration is that sprinters and rugby players tend to weigh more with higher lean mass than distance runners, providing higher skeletal loading forces. These differences in anthropometric and body composition metrics are also associated with different nutritional and Endocrine status.

In contrast to sports involving running, rowing creates a mechanical osteogenic stimulus that is directed through the lumbar spine, resulting in an associated increase in BMD at this site. This site specific effect of rowing can prevent bone loss at the lumbar that would be anticipated with rowers experiencing RED-S.

Swimming and cycling are similar in that both these types of exercise do not provide mechanical skeletal loading osteogenic stimulus. However the consequences on BMD, particularly at the lumbar spine, can be compounded in cycling by the performance advantage of low body mass and therefore potential of restrictive nutrition and consequent effect on Endocrine status: factors which impact bone health.

In the recent pilot study of competitive cyclists, although 7/10 had below average for age lumbar spine BMD, those with stronger bones had a previous history of other sports that improve BMD at this site: namely rugby and rowing, together with the cyclist doing concurrent and consistent weight training throughout the season. These findings were consistent with a study where male riders who had undertaken pre-season weight training had better BMD than riders who had not. Cumulative skeletal loading over a lifetime determines BMD. However, the skeletal system is dynamic and as with any training adaptation, any beneficial effects of skeletal loading exercise are reversible if not maintained throughout the lifespan.

Typically, the objective of off-bike strength and conditioning (S&C) is aimed at producing higher watts on the bike. Some strengthening exercises may, as by product, produce an osteogenic stimulus indirectly by muscle pulling on bone. Should off-bike work include specific mechanical axial skeletal loading exercises that are continued throughout the season? Skeletal loading exercises for cyclists would have to be effective and practical, not requiring access to gym and possible to fit into training schedule throughout the season. This will be investigated in an forthcoming study of competitive male cyclists.

In meantime there will be more discussion on “Health, Hormones and Human Performance” at the BASEM conference 22 March. All welcome, including athletes and coaches, alongside healthcare professional working with athletes.

References

Male Cyclists: bones, body composition, nutrition, performance

Cycling and bone health: a systematic review BMC Medicine 2012

Male Athletes: the Bare Bones of Cyclists

Comparisons of Bone Mineral Density Between Recreational and Trained Male Road Cyclists Clinical Journal of Sport Medicine 2016

Longitudinal Assessment of Bone Mineral Density and Body Composition in Competitive Cyclists Journal of Strength and Conditioning Research 2017

Kings and Queens of the Mountains Science4Perforamnce

Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli Drug Discovery Today 2001

Bone density and neuromuscular function in older competitive athletes depend on running distance Osteoporosis International 2012

Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes BMJ 1990

Male Athletes: the Bare Bones of Cyclists

Resistance Training Is Associated With Higher Lumbar Spine and Hip Bone Mineral Density in Competitive Male Cyclists Journal of Strength and Conditioning Research 2018

A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women  Osteoporosis International 2012

Jumping Improves Hip and Lumbar Spine Bone Mass in Prepubescent Children: A Randomized Controlled Trial JBMR 2001

Longitudinal Changes in Bone Mineral Density in Male Master Cyclists and Nonathletes The Journal of Strength & Conditioning Research 2011