Successful Ageing

As I am discovering, ageing is an inevitable process. However what can you do to keep as healthy as possible in order to get the most out of life?

crop Budapest0571

If you are a Masters athlete, you will know that moving into these age groups means it is advisable to change training emphasis in order to prevent injury and compete successfully. As discussed at the recent conference Royal Society of Medicine on Sports Injuries and Sports Orthopaedics, during the session on “The Ageing Athlete”, older athletes need a longer dynamic warm up with controlled mobilisation and muscle activation, together with strength and conditioning sessions to prevent injury. Moving into next age group every five years gives the opportunity to assess and modify training accordingly.

Childhood development has an impact on long term adult health. Essentially the most rapid changes and potential peaks attained during childhood and adolescence reflect optimal physical and cognitive functioning in later life. The evidence from population cohort studies was presented by Professor Diana Kuh, director of MRC Unit for Lifelong Health and Ageing, at the recent conference at the Royal Society of Medicine. Up to 66% of the decline in functional ability in ageing adults is related to childhood development. In the case of pubertal timing, Professor Kuh described that delay causes 20% reduction of volumetric trabecular bone accrual. In my 3 year longitudinal study of 87 pre and post pubertal girls, high levels of training delayed menarche and blunted attainment of peak bone mass (PBM). Conversely an optimal level of training did not delay menarche and improved bone mineral density compared to age marched sedentary controls. A similar long term effect is seen in older female athletes who have experienced amenorrhoea of more than 6 months duration. Even after retirement and resumption of menses pre-menopause, irreversible loss of bone mineral density (BMD) is seen. Professor Kuh argued for specific and personalised recommendations to individuals to support successful ageing.

From a personalised medical perspective, what about hormonal changes associated with ageing? Although in men testosterone levels decline with age, nevertheless the change is more dramatic in women at menopause where the ovaries stop producing oestrogen and progesterone. This results in increased risk after the menopause of osteoporosis, cardiovascular disease and stroke, together with other vasomotor symptoms and mood changes. With increased life expectancy comes an increasing number of women with menopausal symptoms and health issues which can negatively impact on quality of life. What about hormone replacement therapy (HRT)? HRT improves menopausal symptoms and reduces the risk of post menopausal long term health problems, provided HRT is started within ten years after the menopause. After this window of opportunity replacement oestrogen can actually accelerate cell damage. As with any medical treatment there will be those for whom HRT is contra-indicated. Otherwise the risk:benefit ratio for each individual has to be weighed up so that women can arrive at an informed decision. Regarding the risk of breast cancer, this is increased by 4 cases per 1,000 women aged 50-59 years on combined HRT. This compares to an additional 24 cases in women who have body mass index (BMI)>30 and are not on HRT. This underlines the important of lifestyle which is crucial in all areas of preventative medicine.

What type of HRT has the most favourable risk:benefit ratio? Oral preparations undergo first pass metabolism in the liver, so other routes of delivery such as transdermal may be preferred. There is also an argument that hormones with identical molecular structure are preferable to bio-similar hormones. What functional effect could a slight difference in sex steroid structure have? For example no methyl group and a side chain with hydroxyl group (C-OH) rather than a carbonyl group (C=O)? That is the difference between oestradiol and  testosterone.

img_0373
Testosterone
img_0375
Oestradiol

In the case of hormones with identical molecular structure to those produced endogenously, there are no potential unwanted side effects or immunogenic issues as the molecule is identical to that produced by the body. Although the oestradiol component in most HRT preparations in the UK has an identical molecular structure to endogenous oestradiol, there is only one licensed micronised progesterone preparation that is has an identical molecular structure. Synthetic, bio-similar progestins have additional glucocorticoid and androgenic effects compared to molecular identical progesterone which exerts a mild anti-mineralocorticoid (diuretic) effect.

img_0376
Progesterone
img_0378
Norethisterone (synthetic progestin)

With an increasing ageing population and increase in life expectancy, it is important to support successful ageing and quality of life with a personalised and specific approach.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Conference Royal Society of Medicine 17/1/17 “Sports Injuries and Sports Orthopaedics” Session on “The Ageing Athlete”

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association Sport and Exercise Medicine

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sport Medicine 22/2/17

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sports Medicine

Bio-identical hormone replacement therapy course. Marion Gluck Training Academy 27/1/17

The British Menopause Society

Royal College of Obstetricians and Gynaecologists 

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports

In my previous blogs I have described the adverse effects of Relative Energy Deficiency in sports (RED-S) in both female and male athletes both in terms of current health and sport performance and potential long term health problems. What about young aspiring athletes? There is concern that early sport specialisation, imbalances in training not covering the full range of the components of fitness, together with reduced sleep, all combine to increase injury risk. Young athletes are particularly vulnerable to developing RED-S during a period of growth and development accompanied by a high training load.

Sufficient energy availability and diet quality, including micronutrients, is especially important in young athletes. To investigate further I undertook a three year longitudinal study involving 87 pre- and post-pubertal girls, spread across control pupils at day school together with students in vocational training in both musical theatre and ballet streams. There was a gradation in hours of physical exercise training per week ranging from controls with least, followed by musical theatre, through to ballet stream with the most.

In all girls dietary, training and menstrual history were recorded and collected every six months. At the same visit anthropometric measurements were performed by an experienced Paediatric nurse and bloods were taken for Endocrine markers of bone metabolism and leptin. Annual DEXA scans measured body composition, total body bone mineral density (BMD) and BMD at lumbar spine (including volumetric) and BMD at femoral neck.

The key findings included a correlation between hours of training and the age of menarche and subsequent frequency of periods. In turn, any menstrual dysfunction was associated with low age-matched (Z score) BMD at the lumbar spine. There were significant differences between groups for age-matched (Z score) of BMD at lumbar spine, with musical theatre students having the highest and ballet students the lowest. There were no significant differences in dietary intake between the three groups of students, yet the energy expenditure from training would be very different. In other words, if there is balance between energy availability and energy expenditure from training, resulting in concurrent normal menstrual function, then such a level of exercise has a beneficial effect on BMD accrual in young athletes, as demonstrated in musical theatre students. Conversely if there is a mismatch between energy intake and output due to high training volume, this leads to menstrual dysfunction, which in turn adversely impacts BMD accrual, as shown in the ballet students.

I was fortunate to have two sets of identical twins in my study. One girl in each twin pair in the ballet stream at vocational school had a twin at a non-dance school. So in each twin set, there would be identical genetic programming for age of menarche and accumulation of peak bone mass (PBM). However the environmental influence of training had the dominant effect, as shown by a much later age of menarche and decreased final BMD at the lumbar spine in the ballet dancing girl in each identical twin pair.

After stratification for months either side of menarche, the peak rate of change for BMD at the lumbar spine was found to be just before menarche, declining rapidly to no change by 60 months post menarche. These findings suggest that optimal PBM and hence optimal adult BMD would not be attained if menarche is delayed due to environmental factors such as low energy density diet. If young athletes such as these go on to enter professional companies, or become professional athletes then optimal, age-matched BMD may never be attained as continued low energy density diet and menstrual dysfunction associated with RED-S may persist. Associated low levels of vital hormones such as insulin like growth factor 1 (IGF-1) and sex steroids impair bone microarchitecture and mineralisation. Thus increasing risk of injury such as stress fracture and other long term health problems. The crucial importance of attaining peak potential during childhood and puberty was described at a recent conference at the Royal Society of Medicine based on life course studies. For example, delay in puberty results in 20% reduction of bone mass.

slide10

It is concerning that RED-S continues to occur in young athletes, with potential current and long term adverse consequences for health. Young people should certainly be encouraged to exercise but with guidance to avoid any potential pitfalls where at all possible. In my next blog I will delve into the Endocrine mechanisms involved in RED-S: the aetiology and the outcomes.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal Health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N. Keay, British Journal of Sport Medicine 4/4/17

Keay N. The modifiable factors affecting bone mineral accumulation in girls: the paradoxical effect of exercise on bone. Nutrition Bulletin 2000, vol 25, no 3. 219-222.

Keay N The effects of exercise training on bone mineral accumulation in adolescent girls. Journal of Bone and Mineral Research. Vol 15, suppl 1 2000.

Keay N, Frost M, Blake G, Patel R, Fogelman I. Study of the factors influencing the accumulation of bone mineral density in girls. Osteoporosis International. 2000 vol 11, suppl 1. S31.

New S, Samuel A, Lowe S, Keay N. Nutrient intake and bone health in ballet dancers and healthy age matched controls: preliminary findings from a longitudinal study on peak bone mass development in adolescent females, Proceedings of the Nutrition Society, 1998

Keay N, Dancing through adolescence. Editorial, British Journal of Sports Medicine, vol 32 no 3 196-7, September 1998.

Bone health and fractures in children. National Osteoporosis Society

Lifetime influences on musculoskeletal ageing and body composition. Lecture by Professor Diana Kuh, Director of MRC Unit for Lifelong Healthy Ageing, at Royal Society of Medicine, conference on Sports Injuries and sports orthopaedics. 17/1/17

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Health and fitness in young people

Factors Impacting Bone Development

Optimal body mass index (BMI) coupled with favourable body composition of lean mass and visceral fat is associated with accrual of bone mineral density (BMD) and peak bone mass (PBM) which is vital for setting up BMD within normal ranges for adult life.

New research demonstrates that high BMI exerts a negative effect on the accumulation of BMD and bone architecture in young people. This is something of a surprise. Elevated BMI in young people is known to have a deleterious effect on cardio-metabolic health. However, to date the thinking has been that raised BMI would at least mean that weight bearing exercise would be “weighted” and hence favour accumulation of BMD. Rather it is reported that elevated BMI with increased visceral fat results in impaired bone architecture and BMD. Coupled with decreased lean mass, this means less muscle to exert force on the skeleton to promote BMD accumulation. This distorted body composition impairs attainment of PBM.screen-shot-2016-12-01-at-08-29-56

In my research, deficiency of BMD was found to be irreversible later in adult life, despite normalising body weight, shown for those at the other end of the spectrum of BMI. Those with relative energy deficiency in sports (REDs), formally known as the female athlete triad, demonstrated suboptimal BMD correlated with previous duration of low weight, amenorrhea and delayed onset of menarche, many years on despite return to optimal body weight and normal menstrual status.

Adverse body composition with increased deposition of visceral fat is seen in patients with growth hormone (GH) deficiency, for example post pituitary surgery. Interestingly in these young people with high levels of visceral fat, low levels of GH were recorded. The proposed mechanism of suppression of GH secretion in overweight young people has been discussed. Interestingly high levels of leptin are found in overweight youngsters, compared to low levels found my studies of low weight young dancers with menstrual disturbance. In other words, there appears to be feedback between body weight, body composition and the endocrine system. The other disadvantage of high levels of adipose tissue is that fat soluble vitamin D is “fat locked” and unable to support bone mineral accumulation.

Optimal BMI and body composition are factors associated with accrual of BMD and PBM which is vital for setting up BMD within normal ranges for adult life. In those young people with high BMI and disrupted body composition, dietary measures are needed to reduce body weight. Combined with exercise, including resistance and cardiovascular weight bearing forms, to improve body composition and thus bone architecture and BMD accrual.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal Sport Medicine

Optimal Health: Especially Young Athletes! Part 3 – Consequences of Relative Energy Deficiency in Sports Dr N. Keay, British Association Sport and Exercise Medicine

Science Daily

EurekaAlert

Paediatric Reports

Optimising Health, Fitness and Sports Performance for young people

Version 2Young people need information in order to make life decisions on their health, fitness and sport training with the support of their families, teachers and coaches.

As discussed in my previous blog anima sana in corpore sano, exercise has a positive effect on all aspects of health: physical, mental and social. The beneficial impact of exercise is particularly important during adolescence where bodies and minds are changing. This time period presents a window of opportunity for young people to optimise health and fitness, both in the short term and long term.

The physical benefits of exercise for young people include development of peak bone mass, body composition and enhanced cardio-metabolic health. Exercise in young people has also been shown to support cognitive ability and psychological wellbeing.

Optimising health and all aspects of fitness in young athletes is especially important in order to train and compete successfully. During this phase of growth and development, any imbalances in training, combined with changes in proportions and unfused growth plates can render young athletes more susceptible to overuse injuries. A training strategy for injury prevention in this age group includes development of neuromuscular skills when neuroplasticity is available. Pilates is an excellent form of exercise to support sport performance.

In athletes where low body weight is an advantage for aesthetic reasons or where this confers a competitive advantage, this can lead to relative energy deficiency in sport (RED-S). Previously known as the female athlete triad, this was renamed as male athletes can also be effected. The consequences of this relative energy deficiency state are negative effects on metabolic rate, menstrual function, bone health, protein synthesis and immunity. If this situation arises in young athletes, then this is of concern for current health and may have consequences for health moving into adulthood.

A well informed young person can make decisions to optimise health, fitness and sports performance.

Link to Workshops

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal Health: Especially Young Athletes! Part 3 – Consequences of Relative Energy Deficiency in Sports Dr N. Keay, British Association Sport and Exercise Medicine 13/4/17

Report from Chief Medical Officer

Cognitive benefits of exercise

Injuries in young athletes

Young people: neuromuscular skills for sports performance

IOC consensus statement\

Exercise and fitness in young people – what factors contribute to long term health? Dr N. Keay, British Journal of Sports Medicine