Healthy Hormones

Is your training in tune with your hormones and nutrition to optimise your athletic performance?

Hormones are internal chemical messengers regulating all aspects of your health and athletic performance. Discussed at recent BASEM conference “Health Hormones and Human Performance”

webmd_rm_photo_of_porous_bones
Bone health can be at risk if hormone status not optimal

How? To enable your hormones to do the best job they can for your health and sport performance, you need to find a balance between what, how much and when you train, eat and sleep. In the diagram below, this represents staying on the healthy green plateau. Too much, or too little of any of these choices can lead to imbalances and tipping off the green plateau into the red, less healthy peripheries.

Slide1
Integrated periodisation of training, nutrition and recovery for optimal health and performance (Keay, BJSM 2017)

What? Imbalances between training load, nutrition and recovery can cause problems in the Endocrine system: the whole network of hormone interactions throughout your body. The bottom line is that if insufficient energy is provided through nutrition to cover both your training demands and the “housekeeping” activities within the body to keep you alive, then your body goes into energy saving mode. This situation is called relative energy deficiency in sports (RED-S) and has the potential to adversely impact one or more of the important systems in your body vital for optimal health and performance.

RED-S has evolved from the female athlete triad described in 1980s by Barbara Drinkwater in NEJM, where although female runners were consuming same dietary intake, those with higher training load were more likely to have menstrual dysfunction and low bone mineral density. Since this original description it has become obvious that the reproductive axis is just one of several hormone networks to be impacted by low energy availability and that RED-S also impacts the other half of the population: men.

red-s
Potential Multisystem effects of RED-S (IOC statement BJSM 2014)

Why? Suboptimal levels of energy availability to support health and performance can arise unintentionally, for example with increased training loads and/or times of growth and development in young athletes. Intentionally restrictive eating patterns can also be the cause of RED-S, particularly in sports/dance where low body weight confers a performance or aesthetic advantage. It is an indisputable fact that in order cycle up a mountain you need to overcome gravity and produce high watts/kg. Equally it is pretty impossible to do pointe work, let alone 32 fouttées en tournant en pointe unless you are a lightweight dancer. However if this at the expense of disrupting your hormones, then the advantage of being low body weight will be lost.

How to know? How to know if you, a teammate or a fellow athlete is at risk of RED-S? If you are a female athlete then your hormones are in balance if you are having regular periods (this does not include withdrawal bleeds as result of being on the oral contraceptive pill). Any woman of reproductive age from 16 years to the menopause should have regular periods (unless pregnant). Regular menstruation acts as the barometer of healthy hormones in women. If this is not the case, whether you are an athlete or not, you need to get this checked out medically to exclude underlying medical conditions. Having excluded these, then you need to review the integrated periodisation of training, nutrition and recovery. In male athletes there is not such an obvious sign that your hormones are at healthy levels. However recurrent injury/illness/fatigue can be warning signs. The diagram below shows all the potential adverse effects of RED-S on performance. Be aware that you do not have to have all, or indeed be aware of any of these effects if you develop RED-S.

Screen Shot 2017-05-20 at 19.16.28
Potential Performance effects of RED-S (IOC statement BJSM 2014)

So What? If you are an athlete/dancer, you may be thinking that none of this applies to you. You are feeling and performing fine. Maybe you have not yet experienced any of the detrimental effects of RED-S. However, you will never know how good an athlete you could be and whether you truly are performing to your full potential unless you put yourself in the best position in terms of your hormones to achieve this goal.

performance-potential
Suboptimal performance as result of RED-S (Keay, BJSM 2017)

Key Points

• Insufficient nutrition intake (quantity and quality), whether intentional or not, results in RED-S and multiple hormonal disruptions

• RED-S has detrimental health and athletic performance consequences in both the short and the long term

• Some consequences of RED-S are irreversible for example poor bone health, unless intervention is swift

Check points

• Are you suffering with frequent injuries/fatigue/illness over last 3 months or more?

• Female athletes: if 16 years or older have your periods not started? Have you missed more than 3 consecutive periods?

If yes to any of above, seek medical advice from someone with experience Sports Endocrinology. Now! The longer you leave the situation the harder it will be to rectify. Initially underlying Endocrine conditions per se have to be ruled out. RED-S is a functional dysfunction of the Endocrine system, so a diagnosis of exclusion. Having established RED-S as the diagnosis, monitoring Endocrine markers can be very helpful as these are examples of objective metrics in monitoring energy availability and therefore response to optimising integrated periodisation of nutrition, training and recovery.

Slide1
Integrated periodisation of key training factors support healthy hormones to drive improvements in performance

What to do? Don’t ignore! Although you may think you are fine, if your hormones are not working for you, then you will never reach your full potential as an athlete/dancer. For female athletes having regular periods means your hormones are in healthy ranges and this is normal. Not starting and/or missing periods is not healthy, for any woman.

For both male and female athletes, if you are experiencing recurrent injury, fatigue or illness, you need to get this checked out. There may be a simple explanation such as viral infection, low vitamin D or iron. However it may be that the underlying reason is due to hormone issues.

If you are an athlete, coach, teacher or parent and concerned that you/an athlete in your care has not got the balance right to optimise health and athletic performance, then a 3 way discussion will help and support the decision to seek medical advice as appropriate.

References

Lifestyle Choices for optimising health: exercise, nutrition, sleep Keay, BJSM 2017

Optimal health: including female athletes! Part 1 BJSM 2017

Optimal health: including male athletes! Part 2 BJSM 2017

Optimal Health: Especially Young Athletes! Part 3 BASEM 2017

Optimal Health: For All Athletes! Part 4 BASEM 2017

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sport Nutrition and exercise Metabolism 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Presentation at BASEM conference “Health, Hormones and Human Performance”

 

Health and Performance during Lifespan: latest research

LifeSeasonDay

Your lifespan depends on genetic and key lifestyle choices

Lifespan is dependent on a range of genetic factors combined with lifestyle choices. For example a recent study reported that an increase in one body mass index unit reduced lifespan by 7 months, whilst 1 year of education increased lifespan by 11 months. Physical activity was shown to be a particularly important lifestyle factor through its action on preventing age-related telomere shortening and thus reducing of cellular ageing by 9 years. Nevertheless, even though males and females have essentially identical genomes, genetic expression differs. This results in different disease susceptibilities and evolutionary selection pressures. More studies involving female participants are required!

Circadian clock

Much evidence is emerging about the importance of paying respect to our internal biological clocks when considering the timing of lifestyle factors such as eating, activity and sleep. For example intermittent fasting, especially during the night, and time restricted eating during the day enables metabolic flexibility. In other words, eating within a daylight time window will support favourable metabolism and body composition. No midnight snacks!

For athletes, even more care needs be given to timing of nutrition to support athletic performance. In the short term there is evidence that rapid refuelling after training with a combination of carbohydrate and protein favours a positive balance of bone turnover that supports bone health and prevents injury in the longer term. Periodised nutrition over a training season, integrated with exercise and recovery, is important in order to benefit from training adaptations and optimise athletic performance.

Protein intake in athletes and non athletes

Recovering from injury can be a frustrating time and some athletes may be tempted to reduce food intake to compensate for reduced training. However, recommendations are to maintain and even increase protein consumption to prevent a loss of lean mass and disruption of metabolic signalling. In the case of combined lifestyle interventions, such as nutrition and exercise aimed at reducing body weight, these should be directed at improving body composition. Adequate protein intake alongside exercise will maintain lean mass in order to minimise the risk of sarcopenia and associated bone loss which can occur during hypocaloric regimes. Good protein intake is important for bone health to support bone mineral density and reduce the risk of osteoporosis and fracture.

Adolescent Athlete

In the young athlete, integrated periodisation of training, nutrition and recovery is of particular importance, not only to support health and performance, but as an injury prevention strategy.  Sufficient sleep and nutrition to match training demands are key.

Differences between circadian phenotype and performance in athletes

For everyone, whether athlete or reluctant exerciser, balancing and timing key lifestyle choices of exercise, nutrition and sleep are key for optimising health and performance. However there are individual differences when it comes to the best time for athletes to perform, according to circadian phenotype/chronotype. In other words personal biological clocks which run on biological time. An individual’s performance can vary by as much as 26% depending on the time of day relative to one’s entrained waking time.

Later in Life

Ageing can be can be confused with loss of fitness and ability to perform activities of daily living. Although a degree of loss of fitness does occur with increasing age, this can be prevented to a certain degree and certainly delayed with physical activity. Exercise attenuates sarcopenia, which supports bone mineral density with the added benefit of improved proprioception, helping to reduce risk of falls and potential fracture; not to mention the psychological benefits of exercise.

 

For more discussion on Health Hormones and Human Performance come to British Association of Sport and Exercise Medicine Spring Conference 

BAsem2018_SpringConf_BJSM

References

Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity Nature Communications 2017

Physical activity and telomere length in U.S. men and women: An NHANES investigation Preventive Medicine 2017

The landscape of sex-differential transcriptome and its consequent selection in human adults BMC Biology 2017

Temporal considerations in Endocrine/Metabolic interactions Part 1 British Journal of Sport and Exercise Medicine, October 2017

Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting Obesity 2017

Temporal considerations in Endocrine/Metabolic interactions Part 2 British Journal of Sport and Exercise Medicine, October 2017

Time-restricted eating may yield moderate weight loss in obesity Endocrine Today 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Periodized Nutrition for Athletes Sports Medicine 2017

Internal Biological Clocks and Sport Performance British Journal of Sport and Exercise Medicine, October 2017

Nutritional support for injuries requiring reduced activity Sports in Science Exchange 2017

Balance fat and muscle to keep bones healthy, study suggests NTU October 2017

Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis Journal of the American College of Nutrition 2017

Too little sleep and an unhealthy diet could increase the risk of sustaining a new injury in adolescent elite athletes Scandinavian Journal of Medicine & Science in Sports

Sleep for health and sports performance British Journal of Sport and Exercise Medicine, 2017

The impact of circadian phenotype and time since awakening on diurnal performance in athletes Current Biology

Successful Ageing British Association of Sport and Exercise Medicine 2017

Focus on physical activity can help avoid unnecessary social care BMJ October 2017

Biochemical Pathways of Sarcopenia and Their Modulation by Physical Exercise: A Narrative Review Frontiers in Medicine 2017

 

Optimising Health and Athletic Performance

FactorsWordCloud4

In order to improve sports performance, athletes periodise their training, nutrition and recovery within the context of a training season. For those not in exercise training, these controllable lifestyle factors correspond to exercise, diet and sleep, which require modification during the lifespan. In old money, this was called preventative medicine. Taking this a step further, rather than preventing disease, this proactive, personalised approach optimises health. Health should be a positive combination of physical, mental and social well being, not simply an absence of illness.

Failure to balance these lifestyle factors in an integrated fashion leads to negative outcomes. An athlete may experience maladaptation, rather than the desired adaptations to exercise training. For non-athletes an adverse combination of lifestyle factors can lead to suboptimal health and a predisposition to developing chronic disease.

What are the fundamental pathophysiological mechanisms involved in the aetiology of the clinical spectrum of suboptimal health, suboptimal sports performance and chronic disease?

Inflammation A degree of systemic inflammation and oxidative stress induced by exercise training is required to drive desired adaptations to support improved sport performance. However, prolonged, elevated levels of inflammation have adverse effects on health and underpin many chronic disease states. For example, inflammation is a contributing pathophysiological factor in the development of atherosclerosis and atherothrombosis in cardiovascular disease. What drives this over-response of the inflammatory process? Any combination of adverse lifestyle factors. Adipose tissue has an Endocrine function, releasing a subgroup of cytokines: adipokines which have peripheral and central signalling roles in energy homeostasis and inflammation. In a study of Belgian children, pro-inflammatory energy related biomarkers (high leptin and low adiponectin) were associated with decreased heart rate variability and hence in the long term increased risk of cardiovascular disease. For those with a pre-existing chronic inflammatory condition, response to treatment can be optimised with personalised lifestyle interventions.

Metabolism Non-integrated lifestyle factors can disrupt signalling pathways involved in glucose regulation, which can result in hyperinsulinaeamia and insulin resistance. This is the underlying pathological process in the aetiology of metabolic syndrome and metabolic inflexibility. Non-pharmacological interventions such as exercise and nutrition, synchronised with endogenous circadian rhythms, can improve these signalling pathways associated with insulin sensitivity at the mitochondrial level.

Intriguingly, evidence is emerging of the interaction between osteocalcin and insulin, in other words an Endocrine feedback mechanism linking bone and metabolic health. This is reflected clinically with increased fracture risk found amongst type 2 diabetics (T2DM) with longer duration and higher HbA1C.

Hormone imbalance The hypothalamus is the neuroendocrine gatekeeper of the Endocrine system. Internal feedback and external stimuli are integrated by the hypothalamus to produce an appropriate Endocrine response from the pituitary gland. The pathogenesis of metabolic syndrome involves disruption to the neuroendocrine control of energy homeostasis with resistance to hormones secreted from adipose tissue (leptin) and the stomach (ghrelin). Further evidence for the important network effects between the Endocrine and metabolic systems comes from polycystic ovarian syndrome (PCOS). Although women with this condition typically present to the Endocrine clinic, the underlying aetiology is metabolic dysfunction with insulin resistance disrupting the hypothamic-pituitary-ovarian axis. The same pathophysiology of disrupted metabolic signalling adversely impacting the hypothalamic-pituitary-gonadal axis also applies to males.

In athletes, the exact same signalling pathways and neuroendocrine systems are involved in the development of relative energy deficiency in sports (RED-S) where the underlying aetiology is imbalance in the periodisation of training load, nutrition and recovery.

Gastrointestinal tract In addition to malabsorption issues such as coeliac disease and non-gluten wheat sensitivity, there is emerging evidence that the composition and diversity of the gut microbiota plays a significant role in health. The microbiome of professional athletes differs from sedentary people, especially at a functional metabolic level. Conversely, an adverse gut microbiome is implicated in the pathogenesis of metabolic dysfunction such as obesity and T2DM, via modulation of enteroendocrine hormones regulating appetite centrally and insulin secretion peripherally.

Circadian disregulation As previously discussed, it is not just a question of what but WHEN you eat, sleep and exercise. If there is conflict in the timing of these lifestyle activities with internal biological clocks, then this can disrupt metabolic and endocrine signally. For example, in children curtailed sleep can impact glucose control and insulin sensitivity, predisposing to risk of developing T2DM. Eating too close to the onset of melatonin release in the evening can cause adverse body composition, irrespective of what you eat and activity levels. In those with pre-existing metabolic dysfunction, such as PCOS, timing of meals has an effect on insulin levels and hence reproductive Endocrine function. The immune system displays circadian rhythmicity which integrated with external cues (for example when we eat/exercise/sleep) optimises our immune response. For athletes competing in high intensity races, this may be more favourable in terms of Endocrine and metabolic status in the evening.

Psychology Psychological stress impacts the key pathophysiological mechanisms outlined above: metabolic signalling, inflammation and neuroendocrine regulation, which contribute to Endocrine and metabolic dysfunction. Fortunately stress is a modifiable lifestyle risk factor. In the case of functional hypothalamic amenorrhoea (where nutrition/exercise/sleep are balanced), psychological intervention can reverse this situation.

Conclusion Putting this all together, if the modifiable lifestyle factors of exercise, nutrition, sleep are optimised in terms of composition and timing, this improves metabolic and Endocrine signalling pathways, including neuroendocrine regulation. Preventative Medicine going beyond preventing disease; it optimises health.

BASEM annual conference 22/3/18: Health, Hormones and Human Performance

Presentations

References

Athletic Fatigue: Part 2 Dr N. Keay

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sports Medicine 2017

Endocrine system: balance and interplay in response to exercise training Dr N. Keay

Saturated fat does not clog the arteries: coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions British Journal of Sports Medicine 2017

Longitudinal Associations of Leptin and Adiponectin with Heart Rate Variability in Children Frontiers in Physiology 2017

A Proposal for a Study on Treatment Selection and Lifestyle Recommendations in Chronic Inflammatory Diseases: A Danish Multidisciplinary Collaboration on Prognostic Factors and Personalised Medicine Nutrients 2017

Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals Sports Medicine 2017

Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus Nature Reviews Endocrinology

Insulin and osteocalcin: further evidence for a mutual cross-talk Endocrine 2017

HbA1c levels, diabetes duration linked to fracture risk Endocrine Today 2017

The cellular and molecular bases of leptin and ghrelin resistance in obesity Nature Reviews Endocrinology 2017

Metabolic and Endocrine System Networks Dr N. Keay

Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species Reproduction 2017

Optimal Health: For All Athletes! Part 4 – Mechanisms Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Ubiquitous Microbiome: impact on health, sport performance and disease Dr N. Keay

The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level Gut. BMJ

Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence Trends in Food Science & Technology 2016

Temporal considerations in Endocrine/Metabolic interactions Part 1 Dr N. Keay, British Journal of Sports Medicine 2017

Temporal considerations in Endocrine/Metabolic interactions Part 2 Dr N. Keay, British Journal of Sports Medicine 2017

Sleep Duration and Risk of Type 2 Diabetes Paediatrics 2017

Later circadian timing of food intake is associated with increased body fat Am J Clin Nutr. 2017

Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome Clin Sci (London)

Immunity around the clock Science

Effect of Time of Day on Performance, Hormonal and Metabolic Response during a 1000-M Cycling Time Trial PLOS

Type 2 diabetes mellitus and psychological stress — a modifiable risk factor Nature Reviews Endocrinology 2017

Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behaviour therapy Fertil Steril

 

Optimal health: for all athletes! Part 4 Mechanisms

As described in previous blogs, the female athlete triad (disordered eating, amenorrhoea, low bone mineral density) is part of Relative Energy Deficiency in sports (RED-S). RED-S has multi-system effects and can affect both female and male athletes together with young athletes. The fundamental issue is a mismatch of energy availability and energy expenditure through exercise training. As described in previous blogs this situation leads to a range of adverse effects on both health and sports performance. I have tried to unravel the mechanisms involved. Please note the diagram below is simplified view: I have only included selected major neuroendocrine control systems.

REDs

Low energy availability is an example of a metabolic stressor. Other sources of stress in an athlete will be training load and possibly inadequate sleep. These physiological and psychological stressors input into the neuroendocrine system via the hypothalamus. Low plasma glucose concentrations stimulates release of glucagon and suppression of the antagonist hormone insulin from the pancreas. This causes mobilisation of glycogen stores and fat deposits. Feedback of this metabolic situation to the hypothalamus, in the short term is via low blood glucose and insulin levels and in longer term via low levels of leptin from reduced fat reserves.

A critical body weight and threshold body fat percentage was proposed as a requirement for menarche and subsequent regular menstruation by Rose Frisch in 1984. To explain the mechanism behind this observation, a peptide hormone leptin is secreted by adipose tissue which acts on the hypothalamus. Leptin is one of the hormones responsible for enabling the episodic, pulsatile release of gonadotrophin releasing hormone (GnRH) which is key in the onset of puberty, menarche in girls and subsequent menstrual cycles. In my 3 year longitudinal study of 87 pre and post-pubertal girls, those in the Ballet stream had lowest body fat and leptin levels associated with delayed menarche and low bone mineral density (BMD) compared to musical theatre and control girls. Other elements of body composition also play a part as athletes tend to have higher lean mass to fat mass ratio than non-active population and energy intake of 45 KCal/Kg lean mass is thought to be required for regular menstruation.

Suppression of GnRH pulsatility, results in low secretion rates of pituitary trophic factors LH and FSH which are responsible for regulation of sex steroid production by the gonads. In the case of females this manifests as menstrual disruption with associated anovulation resulting in low levels of oestradiol. In males this suppression of the hypothamlamic-pituitary-gonadal axis results in low testosterone production. In males testosterone is aromatised to oestradiol which acts on bone to stimulate bone mineralisation. Low energy availability is an independent factor of impaired bone health due to decreased insulin like growth factor 1 (IGF-1) concentrations. Low body weight was found to be an independent predictor of BMD in my study of 57 retired pre-menopausal professional dancers. Hence low BMD is seen in both male and female athletes with RED-S. Low age matched BMD in athletes is of concern as this increases risk of stress fracture.  In long term suboptimal BMD is irrecoverable even if normal function of hypothamlamic-pituitary-gonadal function is restored, as demonstrated in my study of retired professional dancers. In young athletes RED-S could result in suboptimal peak bone mass (PBM) and associated impaired bone microstructure. Not an ideal situation if RED-S continues into adulthood.

Another consequence of metabolic, physiological and psychological stressor input to the hypothalamus is suppression of the secretion of thyroid hormones, including the tissue conversion of T4 to the more active T3. Athletes may display a variation of “non-thyroidal illness/sick euthyroid” where both TSH and T4 and T3 are in low normal range. Thyroid hormone receptors are expressed in virtually all tissues which explains the extensive effects of suboptimal levels of T4 and T3 in RED-S including on physiology and metabolism.

In contrast, a neuroendocrine control axis that is activated in RED-S is the hypothalamic-pituitary-adrenal axis. In this axis, stressors increase the amplitude of the pulsatile secretion of CRH, which in turn increases the release of ACTH and consequently cortisol secretion from the adrenal cortex. Elevated cortisol suppresses immunity and increases risk of infection. Long term cortisol elevation also impairs the other hormone axes: growth hormone, thyroid and reproductive. In other words the stress response in RED-S amplifies the suppression of key hormones both directly and indirectly via endocrine network interactions.

The original female athlete triad is part of RED-S which can involve male and female athletes of all ages. There are a range of interacting endocrine systems responsible for the multi-system effects seen in RED-S. These effects can impact on current and future health and sports performance.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Teaching module on RED-S for BASEM as CPD for Sports Physicians

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N.Keay, British Journal of Sport Medicine 4/4/17

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association of Sport and Exercise Medicine

Keay N, Fogelman I, Blake G. Effects of dance training on development,endocrine status and bone mineral density in young girls. Current Research in Osteoporosis and bone mineral measurement 103, June 1998.

Jenkins P, Taylor L, Keay N. Decreased serum leptin levels in females dancers are affected by menstrual status. Annual Meeting of the Endocrine Society. June 1998.

Keay N, Dancing through adolescence. Editorial, British Journal of Sports Medicine, vol 32 no 3 196-7, September 1998.

Keay N, Effects of dance training on development, endocrine status and bone mineral density in young girls, Journal of Endocrinology, November 1997, vol 155, OC15.

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S).Br J Sports Med. 2014 Apr;48(7):491-7.

“Subclinical hypothydroidism in athletes”. Lecture by Dr Kristeien Boelaert at BASEM Spring Conference 2014 on the Fatigued Athlete

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sport Medicine

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports

In my previous blogs I have described the adverse effects of Relative Energy Deficiency in sports (RED-S) in both female and male athletes both in terms of current health and sport performance and potential long term health problems. What about young aspiring athletes? There is concern that early sport specialisation, imbalances in training not covering the full range of the components of fitness, together with reduced sleep, all combine to increase injury risk. Young athletes are particularly vulnerable to developing RED-S during a period of growth and development accompanied by a high training load.

Sufficient energy availability and diet quality, including micronutrients, is especially important in young athletes. To investigate further I undertook a three year longitudinal study involving 87 pre- and post-pubertal girls, spread across control pupils at day school together with students in vocational training in both musical theatre and ballet streams. There was a gradation in hours of physical exercise training per week ranging from controls with least, followed by musical theatre, through to ballet stream with the most.

In all girls dietary, training and menstrual history were recorded and collected every six months. At the same visit anthropometric measurements were performed by an experienced Paediatric nurse and bloods were taken for Endocrine markers of bone metabolism and leptin. Annual DEXA scans measured body composition, total body bone mineral density (BMD) and BMD at lumbar spine (including volumetric) and BMD at femoral neck.

The key findings included a correlation between hours of training and the age of menarche and subsequent frequency of periods. In turn, any menstrual dysfunction was associated with low age-matched (Z score) BMD at the lumbar spine. There were significant differences between groups for age-matched (Z score) of BMD at lumbar spine, with musical theatre students having the highest and ballet students the lowest. There were no significant differences in dietary intake between the three groups of students, yet the energy expenditure from training would be very different. In other words, if there is balance between energy availability and energy expenditure from training, resulting in concurrent normal menstrual function, then such a level of exercise has a beneficial effect on BMD accrual in young athletes, as demonstrated in musical theatre students. Conversely if there is a mismatch between energy intake and output due to high training volume, this leads to menstrual dysfunction, which in turn adversely impacts BMD accrual, as shown in the ballet students.

I was fortunate to have two sets of identical twins in my study. One girl in each twin pair in the ballet stream at vocational school had a twin at a non-dance school. So in each twin set, there would be identical genetic programming for age of menarche and accumulation of peak bone mass (PBM). However the environmental influence of training had the dominant effect, as shown by a much later age of menarche and decreased final BMD at the lumbar spine in the ballet dancing girl in each identical twin pair.

After stratification for months either side of menarche, the peak rate of change for BMD at the lumbar spine was found to be just before menarche, declining rapidly to no change by 60 months post menarche. These findings suggest that optimal PBM and hence optimal adult BMD would not be attained if menarche is delayed due to environmental factors such as low energy density diet. If young athletes such as these go on to enter professional companies, or become professional athletes then optimal, age-matched BMD may never be attained as continued low energy density diet and menstrual dysfunction associated with RED-S may persist. Associated low levels of vital hormones such as insulin like growth factor 1 (IGF-1) and sex steroids impair bone microarchitecture and mineralisation. Thus increasing risk of injury such as stress fracture and other long term health problems. The crucial importance of attaining peak potential during childhood and puberty was described at a recent conference at the Royal Society of Medicine based on life course studies. For example, delay in puberty results in 20% reduction of bone mass.

slide10

It is concerning that RED-S continues to occur in young athletes, with potential current and long term adverse consequences for health. Young people should certainly be encouraged to exercise but with guidance to avoid any potential pitfalls where at all possible. In my next blog I will delve into the Endocrine mechanisms involved in RED-S: the aetiology and the outcomes.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal Health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N. Keay, British Journal of Sport Medicine 4/4/17

Keay N. The modifiable factors affecting bone mineral accumulation in girls: the paradoxical effect of exercise on bone. Nutrition Bulletin 2000, vol 25, no 3. 219-222.

Keay N The effects of exercise training on bone mineral accumulation in adolescent girls. Journal of Bone and Mineral Research. Vol 15, suppl 1 2000.

Keay N, Frost M, Blake G, Patel R, Fogelman I. Study of the factors influencing the accumulation of bone mineral density in girls. Osteoporosis International. 2000 vol 11, suppl 1. S31.

New S, Samuel A, Lowe S, Keay N. Nutrient intake and bone health in ballet dancers and healthy age matched controls: preliminary findings from a longitudinal study on peak bone mass development in adolescent females, Proceedings of the Nutrition Society, 1998

Keay N, Dancing through adolescence. Editorial, British Journal of Sports Medicine, vol 32 no 3 196-7, September 1998.

Bone health and fractures in children. National Osteoporosis Society

Lifetime influences on musculoskeletal ageing and body composition. Lecture by Professor Diana Kuh, Director of MRC Unit for Lifelong Healthy Ageing, at Royal Society of Medicine, conference on Sports Injuries and sports orthopaedics. 17/1/17

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Health and fitness in young people

Sleep for Health and Sports Performance

“Sleep.. chief nourisher in life’s feast,” Macbeth.

In my blog for British Association of Sport and Exercise Medicine, I described improving sport performance by balancing the adaptive changes induced by training together with the recovery strategies to facilitate this, both in the short and long term.  alec0120-12x17

A recovery strategy which is vital in supporting both health and sport performance, during all stages of the training cycle is sleep.

Sufficient sleep is especially important in young athletes for growth and development and in order to support adaptive changes stimulated by training and to prevent injury. Amongst teenage athletes, studies have shown that a lack of sleep is associated with higher incidence of injury. This may be partly due to impaired proprioception associated with reduced sleep. Sleep is vital for consolidating neurological function and protein synthesis, for example in skeletal muscle. Sleep and exercise are both stimuli for growth hormone release from the anterior pituitary, which mediates some of these adaptive effects.

Lack of sleep can also interfere with functioning of the immune system due to disruption of the circadian rhythm of secretion in key areas of the Endocrine system. Athletes in heavy training, with high “stress” loads and associated elevated cortisol can also experience functional immunosuppression. So a combination of high training load and insufficient sleep can compound to disrupt efficient functioning of the immune system and render athletes more susceptible to illness and so inability to train, adapt and recover effectively.  Lack of sleep disrupts carbohydrate metabolism and recently found to suppress expression of genes regulating cholesterol transport. In overreaching training, lack of sleep could be either a cause or a symptom of insufficient recovery. Certainly sleep deprivation impairs exercise performance capacity (especially aerobic exercise) although whether this is due to a psychological, physical or combination effect is not certain.

Sufficient sleep quality and quantity is required for cognitive function, motor learning, and memory consolidation. All skills that are important for sports performance, especially in young people where there is greater degree of neuroplasticity with potential to develop neuromuscular skills. In a fascinating recorded lecture delivered by Professor Jim Horne at the Royal Society of Medicine, the effects of prolonged wakefulness were described. Apart from slowing reaction time, the executive function of the prefrontal cortex involved in critical decision making is impaired. Important consequences not only for athletes, but for doctors, especially for those of us familiar with the on call system in hospitals back in the bad old days. Sleep pattern pre and post concussive events in teenage athletes is found to be related to degree and duration of concussive symptoms post injury. The explanation of how sleep deprivation can cause these functional effects on the brain has been suggested in a study where subtle changes in cerebral neuronal structural properties were recorded. It is not known whether these changes have long term effects.

So given that sleep is essential not only for health and fitness, but to support sports performance, what strategies to maximise this vital recovery process? Use of electronic devices shortly before bedtime suppresses secretion of melatonin (neurotransmitter and hormone), which is a situation not conducive for sleep. Tryptophan is an amino acid precursor in the synthesis of melatonin and serotonin (neurotransmitter) both of which promote sleep. Recent research demonstrates that protein intake before bed can support skeletal and muscle adaptation from exercise and also recovery from tendon injury. Conversely there is recent report that low levels of serotonin synthesis may contribute to the pathogenesis of autoimmune inflammatory disease such as rheumatoid arthritis. This highlights the subtle balance between degree of change required for positive adaptation and a negative over-response, as in inflammatory conditions. This balance is different for each individual, depending on the clinical setting. So maybe time to revisit the warm milky drink before bed? Like any recovery strategy, sleep can also be periodised to support exercise training, with well structured napping during the day as described by Dr Hannah Macleod, member of gold winning Olympic Hockey team.

In conclusion, when you are planning your training cycle, don’t forget that periodised recovery to compliment your schedule should be factored in, with sleep a priority recovery and adaptation strategy.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Balance of recovery and adaptation for sports performance Dr N. Keay, British Association of Sport and Exercise Medicine

Sleep, Injury and Performance

Keay N. The effects of growth hormone misuse/abuse. Use and abuse of hormonal agents: Sport 1999. Vol 7, no 3, 11-12.

Wallace J, Cuneo R, Keay N, Sonksen P. Responses of markers of bone and collagen turover to exercise, growth hormone (GH) administration and GH withdrawal in trained adult males. Journal of Endocrinology and Metabolism 2000. 85 (1): 124-33.

Sleep and sporting performance

Young people: neuromuscular skills for sports performance

Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

“Sleepiness and critical decision making”. Recorded lecture Professor Jim Horne, Royal Society of Medicine 16/11/16

What Does Sleep Deprivation Actually Do To The Brain?

Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training

Exercise and fitness in young people – what factors contribute to long term health? Dr N. Keay, British Journal of Sports Medicine

Serotonin Synthesis Enzyme Lack Linked With Rheumatoid Arthritis

“Science in Elite Sport” Dr Hannah Macleod, University of Roehampton, 6/12/16

Young people: Neuromuscular skills for Sport Performance

Many publications report concerns over low exercise levels in young people. At the other end of the spectrum there are potential pitfalls to be avoided for young athletes. Some aspects have been discussed in my previous articles: Exercise and fitness in young people – what factors contribute to long term health? and Optimising Health, Fitness and Sports Performance for young people, below are some updates.

windsurf

Supporting previous publications that exercise in young people improves cognitive and academic performance, it was found that in boys delay in reading skills was associated with high levels of sedentary time combined with low levels of exercise. Low muscle tone, associated with lack of exercise is also proposed as potential inhibitor of learning in children. Lack of physical activity, coupled with unfavourable body composition in young people is linked with adverse outcomes for bone development and cardio-metabolic disease in adults. Now there also appears to be long term consequences for cognitive ability and neuromuscular skills.

For young people already involved in sport training, the same principles apply in that this represents the optimal time in life for development of not only physical fitness such as CV fitness, muscular strength and endurance, but also neuromuscular skills. All these factors are important to enhance sport performance and to avoid injury. The risk of injury is more prevalent in early sport specialisation, so any strategies to minimise injury risk is important. For example, periodised strength and conditioning with neuromuscular training to reinforce the acquisition of a diverse range of motor skills. In other words to combine both health related physical fitness (eg. CV fitness) with skill related fitness (eg. co-ordination). The Pilates style body conditioning which I teach for young people, includes developing flexibility, proprioception, core stability, balance and co-ordination which are applicable for all sports.

Collaboration with coaches, sports clubs, physiotherapists and other health care professionals is required to support young people and their families in optimising health and fitness.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimising Health, Fitness and Sports Performance for young people Dr N. Keay, British Journal of Sports Medicine

Exercise and fitness in young people – what factors contribute to long term health? Dr N. Keay, British Journal of Sports Medicine

Factors impacting bone development

Reading skills in sedentary boys

Muscle tone and leaning in children

Factors impacting bone development

Optimal Heath especially for Young athletes! British Association of Sport and Exercise Medicine

When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth?

Sports Specialization, Part II: Alternative Solutions to Early Sport Specialization in Youth Athletes

The role of Pilates in facilitating sports performance

Factors Impacting Bone Development

Optimal body mass index (BMI) coupled with favourable body composition of lean mass and visceral fat is associated with accrual of bone mineral density (BMD) and peak bone mass (PBM) which is vital for setting up BMD within normal ranges for adult life.

New research demonstrates that high BMI exerts a negative effect on the accumulation of BMD and bone architecture in young people. This is something of a surprise. Elevated BMI in young people is known to have a deleterious effect on cardio-metabolic health. However, to date the thinking has been that raised BMI would at least mean that weight bearing exercise would be “weighted” and hence favour accumulation of BMD. Rather it is reported that elevated BMI with increased visceral fat results in impaired bone architecture and BMD. Coupled with decreased lean mass, this means less muscle to exert force on the skeleton to promote BMD accumulation. This distorted body composition impairs attainment of PBM.screen-shot-2016-12-01-at-08-29-56

In my research, deficiency of BMD was found to be irreversible later in adult life, despite normalising body weight, shown for those at the other end of the spectrum of BMI. Those with relative energy deficiency in sports (REDs), formally known as the female athlete triad, demonstrated suboptimal BMD correlated with previous duration of low weight, amenorrhea and delayed onset of menarche, many years on despite return to optimal body weight and normal menstrual status.

Adverse body composition with increased deposition of visceral fat is seen in patients with growth hormone (GH) deficiency, for example post pituitary surgery. Interestingly in these young people with high levels of visceral fat, low levels of GH were recorded. The proposed mechanism of suppression of GH secretion in overweight young people has been discussed. Interestingly high levels of leptin are found in overweight youngsters, compared to low levels found my studies of low weight young dancers with menstrual disturbance. In other words, there appears to be feedback between body weight, body composition and the endocrine system. The other disadvantage of high levels of adipose tissue is that fat soluble vitamin D is “fat locked” and unable to support bone mineral accumulation.

Optimal BMI and body composition are factors associated with accrual of BMD and PBM which is vital for setting up BMD within normal ranges for adult life. In those young people with high BMI and disrupted body composition, dietary measures are needed to reduce body weight. Combined with exercise, including resistance and cardiovascular weight bearing forms, to improve body composition and thus bone architecture and BMD accrual.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal Sport Medicine

Optimal Health: Especially Young Athletes! Part 3 – Consequences of Relative Energy Deficiency in Sports Dr N. Keay, British Association Sport and Exercise Medicine

Science Daily

EurekaAlert

Paediatric Reports

Health and Fitness in young people

Recent reports reveal that children in Britain are amongst the least active in the world. At the other end of the spectrum there have been a cluster of articles outlining the pitfalls of early specialisation in a single sport.

Regarding the reports of lack of physical activity amongst young people in Britain, this is of concern not only for their current physical and cognitive ability, but has repercussions for health in adult life. Research demonstrates that young people with low cardiovascular fitness have an increased risk of developing cardiovascular disease in adult life. Conversely, the beneficial effects of weight bearing exercise in prepubescent girls has been shown to enhance bone mineral density accumulation, which will have beneficial impact on peak bone mass. However, as I found in my longitudinal studies, the level of exercise has to be in conjunction with an appropriate, well-balanced diet to avoid relative energy deficiency deficiency in sport (RED-S), which can compromise bone mineral density accumulation.m-running

At the other end of the scale, early specialisation in a single sport does not necessarily guarantee long term success. Rather, this can increase the risk of overuse injury in developing bodies, which in turn has long term consequences. Ensuring that all elements of fitness are considered may be an injury prevention strategy. I agree that injury prevention can be viewed as part of optimising sports performance, especially in young athletes for both the present and in the long term.

Sleep is a vital element in optimising health and fitness, especially in young people who may be tempted to look at mobiles or screens of other mobile devices which delays falling asleep by decreasing melatonin production. Sleep promotes mental freshness and physical elements such as boosting immunity and endogenous release of growth hormone. As Macbeth put it, sleep is the “chief nourisher in life’s great feast”.

A balanced approach to health and fitness should be promoted, with young people encouraged to take part in a range of sporting activities.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Young athletes’ optimal health: Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association Sport and Exercise Medicine, 13/4/17

Sleep for health and sports performance Dr N. Keay, British Journal Sport Medicine, 7/2/17

Optimising health, fitness and sports performance for young people Dr N. Keay, British Journal Sport Medicine

Telegraph article

Active Healthy Kids global alliance

Poor cardiovascular fitness in young people risk for developing cardiovascular disease 

Sports Specialization in Young Athletes

IOC consensus statement on youth athletic development British Journal Sport Medicine