Endocrine system: balance and interplay in response to exercise training

The process of homeostasis maintains a steady internal milieu. So how is it possible for adaptations to occur? What are the internal mechanisms that determine a good outcome versus a negative one?

Changes in the external environment, such as exercise training, challenge homeostasis, producing spatial and temporal responses in the internal environment. These cause interactions between muscle, bone and gut, modulated by the Endocrine system. The degree and nature of these responses dictate whether a positive adaptation occurs. An excessive response, or a response not in tune with the networks of the Endocrine system, can hinder adaptation or produce a maladaptive response. The balance and interplay of internal responses are crucial in determining the outcome to exercise training in the individual.

F=MA

Local responses in exercising tissues

Exercising tissues release exerkines (metabolites, nucleic acids, peptides) which are packaged in exosomes and microvesicles. The content of these vesicle packages increases with intensity of endurance exercise in a dose-dependent manner. These exerkines have autocrine and paracrine effects, which modulate systemic adaptations to endurance exercise in the tissues themselves and those in the vicinity.

The range of these molecular responses from exercising tissues has been identified applying multi-omics (epigenomic, transcriptomic and proteomic analyses). Furthermore variance in trainability has been shown to be correlated with the integrated responses of tissue molecular signalling pathways to endurance exercise.

In a similar manner, the degree of inflammatory response and production of reactive oxygen and nitrogen species (RONS) to exercise mediate favourable adaptations. Inter-individual variations in redox status has been shown to determine the ability to adapt to exercise training. However, unlimited increase in response does not necessarily produce a better outcome. An over response to exercise in these signalling pathways, hinders adaptation.

Exercise promotes bone adaptation in terms of bone material, structure and muscle action. Paracrine crosstalk occurs between muscle and bone. Muscle myokines and insulin like growth factor 1 (IGF1) favour bone formation, whilst inflammatory molecules, such as interleukin 6 (Il-6) released during muscle contractions, favour bone reabsorption. The balance between these opposing processes determines whether bone remodelling is effective, or whether bone stress reactions occur over a pathological continuum. These responses and adaptations occur on the background of lifespan Endocrine environment, which impacts the outcome.

Gut microbiota

The gut microbiota support the regulation of inflammation at the local and systemic level. Furthermore the communication between the gut microbiota and mitochondria has been described as an important interaction in facilitating adaptive responses to exercise. Mitochondria are organelles crucial for production of ATP, as well as RONS. The gut microbiota are involved in mitochondrial biogenesis by regulating key mitochondrial transcriptional factors and enzymes . Furthermore, the metabolites of the gut microbiota such as short chain fatty acids, modulate the inflammatory effects of mitochondrial oxidative stress. Conversely genetic variants in the mitochondrial genome could impact mitochondrial function and thus the gut microbiota in terms of composition and activity.

The gut microbiota have a role in regulating intestinal permeability. Leaky gut is where epithelial integrity is lost at the tight junctions between cells in the gut lining. Leaky gut can occur in gut dysbiosis and also following endurance exercise where re-perfusion injury produces acute hyper-permeability. In these instances, increased gut permeability augments the antigen load and causes increased systemic inflammation and potentially can trigger autoimmune disease. This demonstrates that an excessive inflammatory response to exercise can hinder positive adaptation

Metabolic adaptations

Metabolic flexibility, the ability to respond and adapt to changes in metabolic demand, is enhanced with exercise training through these autocrine, paracrine and Endocrine mechanisms. Metabolic flexibility supports energy availability and fuel selection during exercise. Exercise mimetics, such as artificial metabolic modulators, have been reported to up-regulate gene expression to shift metabolism to fat oxidation in exercising muscle. This would potentially extend the limit of endurance exercise. However this “short cut” to adaptation favouring improved sport performance is illegal, with such molecular ligands on the World Anti-Doping Agency (WADA) banned list.

Hierarchy of control

There is a hierarchy of control in modulating multi-system adaptations to exercise. The Endocrine system is key. Exercise per se produces an Endocrine response, for example exercise is a key stimulus for growth hormone release via the hypothalamus, the neuroendocrine gatekeeper. Growth hormone supports the anabolic response to exercise. In addition, the Endocrine milieu during the lifespan has an impact on response and adaptations to exercise. Any disruption in the Endocrine system hinders adaptive changes. Endocrine dysfunction may occur as a result of non-integrated periodisation of exercise/nutrition and recovery as seen in relative energy deficiency in sports (RED-S). Dysfunction can also occur due to an Endocrine pathology.

Conclusion

Changes in external stimuli, such as exercise and nutrition, produce internal responses on autocrine, paracrine and Endocrine levels. These molecular signalling pathways drive adaptive changes through integrated, network effects. However any imbalances in these interactive responses can hinder desired adaptive changes and even result in negative maladaptive outcomes to exercise training.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Keay N, Logobardi S, Ehrnborg C, Cittadini A, Rosen T, Healy ML, Dall R, Bassett E, Pentecost C, Powrie J, Boroujerdi M, Jorgensen JOL, Sacca L. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sport: a double blind, placebo controlled study. Journal of Endocrinology and Metabolism. 85 (4) 1505-1512. 2000.

Sport Endocrinology presentations

Sports Endocrinology – what does it have to do with performance? Dr N.Keay, British Journal of Sport Medicine

Balance of recovery and adaptation for sports performance Dr N.Keay, British Association of Sport and Exercise Medicine

Inflammation: Why and How Much? Dr N.Keay, British Association of Sport and Exercise Medicine

Clusters of Athletes – A follow on from RED-S blog series to put forward impact of RED-S on athlete underperformance  Dr N.Keay, British Association of Sport and Exercise Medicine

Optimal Health: For All Athletes! Part 4 – Mechanisms Dr N.Keay, British Association of Sport and Exercise Medicine

The potential of endurance exercise-derived exosomes to treat metabolic diseases Nature Reviews Endocrinology

Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise Cold Spring Harbor Perspectives in Medicine

Genomic and transcriptomic predictors of response levels to endurance exercise training
Journal of Physiology

Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox inter-individual variability Acta Physiologica

Mechanical basis of bone strength: influence of bone material, bone structure and muscle action Journal of Musculoskeletal and Neuronal Interactions

The Crosstalk between the Gut Microbiota and Mitochondria during Exercise Frontiers in Physiology

Leaky Gut As a Danger Signal for Autoimmune Diseases Frontiers in Immunology

Metabolic Flexibility in Health and Disease Cell Metabolism

Hormones and Sports Performance

PPARδ Promotes Running Endurance by Preserving Glucose Cell Metabolism

 

Addiction to Exercise

ExerciseAddiction

Health is not just the absence of illness, but rather the optimisation of all components of health: physical, mental and social. Exercise has numerous benefits on all these aspects. However, a recent article in the British Medical Journal described how exercise addiction can have detrimental physical, mental and social effects.

Dedication and determination are valuable qualities required to be successful in life, including achieving sporting prowess. Yet, there is a fine line between dedication and addiction.

To improve sports performance, cumulative training load has to be increased in a quantified fashion, to produce an overload and hence the desired physiological and Endocrine adaptive responses. Integrated periodisation of training, recovery and nutrition is required to ensure effective adaptation. Sufficient energy availability and quality of nutrition are essential to support health and desired adaptations. On the graph above the solid blue line represents a situation of energy balance, where the demands of increased training load are matched by a corresponding rise in energy availability. This can be challenging in sports where low body weight confers a performance or aesthetic advantage, where the risk of developing relative energy deficiency in sport (RED-S) has implications for Endocrine dysfunction, impacting all aspects of health and sports performance.

Among those participating in high volumes of exercise, what distinguishes a healthy level of commitment from exercise addiction? Physical factors alone are insufficient: all those engaging in high levels of training can experience overuse injuries and disruption in Endocrine, metabolic and immune systems. Equally, in all these exercising individuals, overtraining can result in underperformance.

Psychological factors are the key distinguishing features between the motivated athlete and the exercise addict. In exercise addiction unhealthy motivators and emotional connection to exercise can be identified as risk factors. In exercise addiction the motivation to exercise is driven by the obsession to comply with an exercise schedule, above all else. This can result in negative effects and conflict in social interactions, as well as negative emotional manifestations, such as anxiety and irritability if unable to exercise, including the perceived necessity to exercise even if fatigued or injured.

Two categories of exercise addiction have been described. Primary exercise addiction is the compulsion to follow an excessive training schedule. Without balancing energy intake, the physical consequence may be a relative energy deficiency, as indicated on the graph by the dashed blue line. In secondary exercise addiction, the situation is compounded by a desire specifically to control body weight. These individuals consciously limit energy intake, almost inevitably developing the full clinical syndrome described in RED-S, dragging them down to the position indicated by the dotted blue line on the chart. These situations of exercise addiction can lead to varying risk categories of RED-S.

As described at the start of this blog, there is a blurred boundary between the dedicated athlete and the exercise addict. In practice there is most likely a cross over. For example, an athlete may start with healthy motivators and positive emotional connection to exercise, which can become a primary addiction to adhere rigidly to a training schedule, rather than putting the emphasis on the outcome of such training. In the case of an athlete where low body weight is an advantage, it is easy to appreciate how this could become a secondary exercise addiction, where the motivation for exercising becomes more driven by the desire to control weight, rather than performance.

In order to support those with exercise addiction, discussion needs to focus on adopting a more flexible approach to exercise, by recognising that exercise addiction has detrimental effects on all aspects of current and long term health. Furthermore, in the case of athletes, a multi-disciplinary approach is desirable to help the individual refocus on the primary objective of training: to improve performance. In all situations, discussion should explore modifications to exercise and nutrition, in order to prevent the negative effects of RED-S on health and performance.

Exercise has numerous health benefits and is usually viewed as positive behaviour. However, the outcome of exercise is related to the amount of training, appropriate nutrition and motivation for exercising.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Addiction to Exercise British Medical Journal 2017

Clusters of Athletes British Association of Sport and Exercise Medicine 2017

Sport performance and relative energy deficiency in sport British Journal of Sport Medicine 2017

Balance of recovery and adaptation for sports performance British Association of Sport and Exercise Medicine 2017

Optimal Health for all athletes Part 4 Mechanisms of RED-S British Journal of Sport Medicine 2017

Sports Endocrinology – what does it have to do with performance? British Journal of Sport Medicine 2017

Inflammation: Why and How Much? British Association of Sport and Exercise Medicine 2017

Clusters of Athletes

 At some time, most athletes experience periods of underperformance. What are the potential causes and contributing factors?

classification

Effective training improves sports performance through a process of adaptation that occurs, at both the cellular and system levels, during the recovery phase. Training overload must be balanced with sufficient subsequent recovery. A long-term improvement in form is expected, following a temporary dip in performance, due to short-term fatigue.

However, when an athlete experiences a stagnation of performance, what are the potential underlying causes? How should these be addressed to prevent an acute situation developing into a more chronic spiral of decreasing performance?

Depending on clinical presentation, the first step is to exclude medical conditions. Potential infective causes include Epstein Barr virus (particularly in young athletes), Lyme disease and Weil’s disease. Systemic inflammatory conditions should be considered. Endocrine and metabolic causes include pituitary, gonadal, adrenal, thyroid  dysfunction, blood sugar control,  and malabsorption.

If medical conditions are excluded, attention should turn to the athlete’s energy balance in the context of adherence to the current training plan. Potential causes of underperformance, the inability to improve in training and competition, are illustrated in the diagram above.

Athletes in the upper right quadrant fail to live up to performance expectations, in spite of maintaining a good energy balance while adhering to the prescribed training plan. However, they may represent non-functional overreaching, where overload is not balanced with sufficient recovery. In other words, the periodisation of training and recovery is not optimised. The balance between chronic training load (fitness) and acute training load (fatigue) provides a useful metric for assessing form. Heart rate variability (HRV) can be another potentially useful measure in detecting aerobic, endurance fatigue. If the training plan is not producing the expected improvements, then this plan needs revising. Don’t forget that sleep is essential to facilitate endocrine driven adaptations to exercise training.

Athletes in the lower right quadrant are of more concern. Inadequate energy balance, especially during periods of increased training load or intentional weight loss, can be a cause of underperformance, despite the athlete being able to adhere to the training plan. This would correspond to being at risk of developing relative energy deficiency in sport (RED-S) on the amber warning in the risk stratification laid out by the International Olympic Committee.

Both of these groups are able to adhere to a training plan, but suboptimal training and recovery periodisation and/or insufficient energy intake can produce a situation of underperformance. Intervention is required to prevent them moving into the clusters on the left, representing a more chronic underperformance scenarios that are therefore more difficult to rectify.

Athletes in the upper left quadrant exhibit overtraining syndrome: a prolonged maladaptation process accompanied by a decrease in performance (not merely stagnation) and inability to adhere to training plan. The metric of decreased HRV and inability of heart rate to accelerate in response to exercise have been suggested as markers of overtraining.

Those athletes in the lower left quadrant fall into the RED-S category, where multiple interacting Endocrine networks are impacted by an energy deficient state. RED-S not only impairs sports performance, but impacts both current and future health. For example low endogenous levels of sex steroids and insulin-like growth factor 1 (IGF1) disrupt formation of bone microarchitecture and bone mineralisation, resulting in increased risk of recurrent stress fracture in addition to potentially irreversible bone loss in the longer term. In cases of recurrent injury and underperformance amongst athletes it is imperative to exclude Endocrine dysfunction and then consider whether RED-S is the fundamental cause.

There are many potential causes of underperformance in athletes. Once medical conditions have been excluded, the main aim should be to prevent acute situations becoming chronic and therefore more difficult to resolve.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Sport Endocrinology Dr N. Keay, British Journal of Sport Medicine 2017

Sport Performance and RED-S, insights from recent Annual Sport and Exercise Medicine and Innovations in Sport and Exercise Nutrition Conferences Dr N.Keay, British Journal of Sport Medicine 2017

Relative Energy Deficiency in Sport CPD module for British Association of Sport and Exercise Medicine

Optimal Health: For All Athletes! Part 4 – Mechanisms, Dr N. Keay, British Association of Sport and Exercise Medicine

Balance of recovery and adaptation for sports performance Dr N. Keay, British Association of Sport and Exercise Medicine

Sleep for health and sports performance Dr N. Keay, British Journal of Sport Medicine

Optimal health: including female athletes! Part 1 Bones Dr N.Keay, British Journal of Sport Medicine

Inflammation: why and how much? Dr N. Keay, British Association of Sport and Exercise Medicine

Fatigue, Sport Performance and Hormones… Dr N.Keay, British Journal of Sport Medicine

Part 3: Training Stress Balance—So What? Joe Friel

Heart Rate Variability (HRV) Science for Sport

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Prevention, Diagnosis, and Treatment of the Overtraining Syndrome: Joint Consensus Statement of the European College of Sport Science and the American College of
Sports Medicine. Joint Consensus Statement. Medicine & Science in Sports & Exercise 2012

Optimal health: for all athletes! Part 4 Mechanisms

As described in previous blogs, the female athlete triad (disordered eating, amenorrhoea, low bone mineral density) is part of Relative Energy Deficiency in sports (RED-S). RED-S has multi-system effects and can affect both female and male athletes together with young athletes. The fundamental issue is a mismatch of energy availability and energy expenditure through exercise training. As described in previous blogs this situation leads to a range of adverse effects on both health and sports performance. I have tried to unravel the mechanisms involved. Please note the diagram below is simplified view: I have only included selected major neuroendocrine control systems.

REDs

Low energy availability is an example of a metabolic stressor. Other sources of stress in an athlete will be training load and possibly inadequate sleep. These physiological and psychological stressors input into the neuroendocrine system via the hypothalamus. Low plasma glucose concentrations stimulates release of glucagon and suppression of the antagonist hormone insulin from the pancreas. This causes mobilisation of glycogen stores and fat deposits. Feedback of this metabolic situation to the hypothalamus, in the short term is via low blood glucose and insulin levels and in longer term via low levels of leptin from reduced fat reserves.

A critical body weight and threshold body fat percentage was proposed as a requirement for menarche and subsequent regular menstruation by Rose Frisch in 1984. To explain the mechanism behind this observation, a peptide hormone leptin is secreted by adipose tissue which acts on the hypothalamus. Leptin is one of the hormones responsible for enabling the episodic, pulsatile release of gonadotrophin releasing hormone (GnRH) which is key in the onset of puberty, menarche in girls and subsequent menstrual cycles. In my 3 year longitudinal study of 87 pre and post-pubertal girls, those in the Ballet stream had lowest body fat and leptin levels associated with delayed menarche and low bone mineral density (BMD) compared to musical theatre and control girls. Other elements of body composition also play a part as athletes tend to have higher lean mass to fat mass ratio than non-active population and energy intake of 45 KCal/Kg lean mass is thought to be required for regular menstruation.

Suppression of GnRH pulsatility, results in low secretion rates of pituitary trophic factors LH and FSH which are responsible for regulation of sex steroid production by the gonads. In the case of females this manifests as menstrual disruption with associated anovulation resulting in low levels of oestradiol. In males this suppression of the hypothamlamic-pituitary-gonadal axis results in low testosterone production. In males testosterone is aromatised to oestradiol which acts on bone to stimulate bone mineralisation. Low energy availability is an independent factor of impaired bone health due to decreased insulin like growth factor 1 (IGF-1) concentrations. Low body weight was found to be an independent predictor of BMD in my study of 57 retired pre-menopausal professional dancers. Hence low BMD is seen in both male and female athletes with RED-S. Low age matched BMD in athletes is of concern as this increases risk of stress fracture.  In long term suboptimal BMD is irrecoverable even if normal function of hypothamlamic-pituitary-gonadal function is restored, as demonstrated in my study of retired professional dancers. In young athletes RED-S could result in suboptimal peak bone mass (PBM) and associated impaired bone microstructure. Not an ideal situation if RED-S continues into adulthood.

Another consequence of metabolic, physiological and psychological stressor input to the hypothalamus is suppression of the secretion of thyroid hormones, including the tissue conversion of T4 to the more active T3. Athletes may display a variation of “non-thyroidal illness/sick euthyroid” where both TSH and T4 and T3 are in low normal range. Thyroid hormone receptors are expressed in virtually all tissues which explains the extensive effects of suboptimal levels of T4 and T3 in RED-S including on physiology and metabolism.

In contrast, a neuroendocrine control axis that is activated in RED-S is the hypothalamic-pituitary-adrenal axis. In this axis, stressors increase the amplitude of the pulsatile secretion of CRH, which in turn increases the release of ACTH and consequently cortisol secretion from the adrenal cortex. Elevated cortisol suppresses immunity and increases risk of infection. Long term cortisol elevation also impairs the other hormone axes: growth hormone, thyroid and reproductive. In other words the stress response in RED-S amplifies the suppression of key hormones both directly and indirectly via endocrine network interactions.

The original female athlete triad is part of RED-S which can involve male and female athletes of all ages. There are a range of interacting endocrine systems responsible for the multi-system effects seen in RED-S. These effects can impact on current and future health and sports performance.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Teaching module on RED-S for BASEM as CPD for Sports Physicians

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N.Keay, British Journal of Sport Medicine 4/4/17

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association of Sport and Exercise Medicine

Keay N, Fogelman I, Blake G. Effects of dance training on development,endocrine status and bone mineral density in young girls. Current Research in Osteoporosis and bone mineral measurement 103, June 1998.

Jenkins P, Taylor L, Keay N. Decreased serum leptin levels in females dancers are affected by menstrual status. Annual Meeting of the Endocrine Society. June 1998.

Keay N, Dancing through adolescence. Editorial, British Journal of Sports Medicine, vol 32 no 3 196-7, September 1998.

Keay N, Effects of dance training on development, endocrine status and bone mineral density in young girls, Journal of Endocrinology, November 1997, vol 155, OC15.

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S).Br J Sports Med. 2014 Apr;48(7):491-7.

“Subclinical hypothydroidism in athletes”. Lecture by Dr Kristeien Boelaert at BASEM Spring Conference 2014 on the Fatigued Athlete

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sport Medicine