Returning to Sport/Dance restoring Energy Availability in RED-S?

Although improvements are being made in raising awareness and in effective medical management of relative energy deficiency in sport (RED-S)[1, 2] what about once an athlete/dancer is “medically cleared” to return to sport/dance? What advice/support is there for athletes/dancers and their coaches/teachers? After discussions with coaches, here are some suggestions on how to achieve return to sport/dance after RED-S.

LifeSeasonDayTo recap, RED-S is a situation of low energy availability (LEA), which can lead to adverse health and performance consequences[3,4]. LEA can be a result of intentional energy restriction, which covers a spectrum of issues with eating from disordered eating to full blown clinical eating disorder. Ironically the original intention of these eating issues may have been to improve athletic performance, yet sustained LEA will ultimately lead to stagnation and deterioration in performance as found in male athletes[5].

The desire to return to full fitness can be a powerful incentive to address LEA. Nevertheless return to sport/dance needs to be carefully structured in collaboration with coaches to prevent injury and avoiding regression to the LEA state.

Structured return to training and nutrition

  • Initially focus should be on body weight strength and conditioning (S&C). Inevitably in RED-S adaptive responses to training stimuli will be dampened due to shut down of hormones networks into an energy saving mode. Once adequate EA has been established, hormone networks will be able to respond. Restoring muscle tone and working on proprioception forms a good basis to build from to mitigate injury risk. Impaired neuromuscular skills have been reported in female athletes in LEA[6], together with adverse effects of LEA on bone health increases injury risk.
  • The other reason for gradual return to training is that a routine of fuelling around training (before, during, after) needs to be established. In particular recovery nutrition within 30 minutes window to enable hormonal responses to training. Note that having this recovery nutrition does not mean reducing intake at the next meal!
  • Long endurance should be eased into after restoring muscle strength and control, in order to prevent injury. Additionally this type of training will necessitate a higher energy requirement. If adequate energy availability has only recently been restored, the balance is fragile and so too much training too soon can have negative effects. Especially if a fuelling strategy around training has not been established as described above.
  • High intensity/interval training should be the last type of training to be resumed as this places the highest stress and requires the highest energy demand on the athlete/dancer.
  • Injury, soft tissue and bone stress responses are more frequent in hormonal dysfunction of RED-S in both male and female athletes[7]. If an injury has been sustained during this period of LEA then particular emphasis needs to be on initial S&C. In the case of previous bone stress responses, multi-direction loading is key to build bone strength before resuming formal run training in athletes who are runners. Even if a bone injury has not occurred, bone turnover is one of the first systems to be adversely impacted by RED-S, so including this type of multidirectional bone loading in the initial structured return for all athletes/dancers would be beneficial.
  • Discuss with your coach a realistic, attainable goal if this will help. Maybe a low key race/event several months down the track

What to look out for

  • Don’t ignore injury niggles, illness or fatigue. Discuss with your coach and back off if necessary. This is a process, not a sprint.
  • Female athletes. You may well have experienced menstrual disruption during your time in LEA. This is a crucial training metric. Please use it! If your menstruation becomes irregular/stops this is your warning sign that your body is not ready to step up training[7]. Male coaches please reinforce this and be aware of this point. Remember Gwen Jorgensen posting her periods on Training Peaks as a training metric?
  • Flexibility in approach. Try not to put pressure on yourself to return to your previous PBs. It is important to have a plan, but you can be flexible. Everyone is different so this process of returning to sport/dance does not have a set, rigid timetable.
  • Enjoyment! Don’t forget the original reason that you started your sport/dance was for enjoyment! This is an opportunity to rediscover that joy, whether you return to competition or not.
  • “Recovery?” Does anyone fully “recover” from disordered eating/eating disorder? I don’t think so. To be a successful athlete, or indeed successful in life you need self-motivation, drive, determination. All admirable qualities, but sometimes these can get diverted to cause unhealthy eating/training patterns. So be aware that in times of stress it may be tempting to revert to old habits of under eating/over exercise to reassure yourself that you are in control.
  • Be prepared for questions: why have you been off training? Why are you not doing fully training schedule? Maybe you want to tell your team mates/friends. Maybe you don’t. That is your call.

So good luck with your return to sport/dance after RED-S, if that is what you want to do. Always discuss with you coach how to approach this.

References

1 BASEM Educational website www.health4perforamnce.co.uk

BJSM blog: Update on RED-S N Keay 2018

3, 4 IOC consensus statements on RED-S BJSM 2014 and update 2018

5 Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. N Keay, G Francis, K Hind. BMJ Open in Sport and Exercise Medicine 2018

5 Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes.
Tornberg Å Melin A Koivula F Johansson A Skouby S et. al.Medicine and science in sports and exercise 2017 vol: 49 (12) pp: 2478-2485

6 Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Heikura, Ida A. Uusitalo, Arja L.T. Stellingwerff, Trent et al International Journal of Sport Nutrition and Exercise Metabolism 2018, 28, 4, 403-411

7 What’s so good about Menstrual Cycles? N Keay BJSM blog 2019

What is Dance Medicine?

Traditionally dance medicine has been somewhat the poor relation of sports medicine. Why is this the case? There is no doubt that dancers, of whatever genre, require the physical and psychological attributes of athletes. However, dance involves an additional artistic component where ultimately performance on stage is judged not according to a score card as in aesthetic sports, rather on the ability of the dancers to forge an emotional connection with the audience.

As with athletes, injuries are always an important topic for dancers: how to recognise the aetiology of injuries and thus develop prevention strategies. Dance UK have published two reports on national enquiries into the health of dancers. Dance UK has now evolved into the organisation One Dance which includes the National Institute of Dance Medicine and Science (NIDMS). One Dance provides delivery of the Healthier Dancer Programme (HDP) whose talks regularly engage 1500+ dancers and dance professionals per year and which will be a part of the One Dance UK conference at the end of November, an overarching event for the entire dance sector. One Dance holds a list of healthcare professionals with experience and expertise in dance. One Dance is an especially an important resource for independent dancers who will not have access to the provision for those working in larger dance companies.

However, beyond injury management, there are important aspects of the health of dancers which need to be considered, highlighted in an information booklet “Your body, Your risk” from Dance UK. The female athlete triad is well established as a clinical spectrum comprising of disordered eating, menstrual dysfunction and impaired bone health. Indeed impaired bone mineral density many persist even after retirement in female dancers. The recent evolution of the female athlete triad into relative energy deficiency in sports (RED-S) provides an important clinical model. RED-S includes male athletes/dancers, involves multiple body systems and crucially, evidence of detrimental effects on athletic performance is being researched and described. In other words RED-S is not restricted to female dancers/athletes with bone stress injuries.

BalletDials
Integrated periodisation of training, nutrition and recovery support perforamnce

The fundamental cause of RED-S is low energy availability where nutritional intake is insufficient to cover energy requirements for training and resting metabolic rate. In this situation the body goes into energy saving mode, which includes shut down of many hypothalamic-pituitary axes and hence endocrine network dysfunction. As hormones are crucial to backing up adaptations to exercise training, dysfunction will therefore have an effect not just on health, but on athletic performance. In dance, neuromuscular skills and proprioception are key for performance. Hence, of concern is that these skills are adversely impacted in functional hypothalamic amenorrhoea, which together with impaired bone health from RED-S, greatly increases injury risk.

Low energy availability can arise in dance and sport where low body weight confers an aesthetic and/or performance advantage. There is no doubt that being light body weight facilitates pointe work in female dancers and ease of elevation in male dancers. Thus, low energy availability can occur intentionally in an effort to achieve and maintain low body weight. Low energy availability can also be unintentional as a result of increased expenditure from training, rehearsal and performance demands and the practicality of fuelling. This situation is of particular concern for young dancers in training, as this represents a high energy demand state, not just for full time training, additionally in terms of energy demands for growth and development, including attainment of peak bone mass.

Despite the significance of RED-S in terms of negative consequences on health and performance, as outlined by the IOC in the recent consensus update, further work is required in terms of raising awareness, identification and prevention. Fortunately these issues are being addressed with the development of an online educational resource on RED-S for athletes/dancers, their coaches/teachers/parents and healthcare professionals which is backed by British Association of Sport and Exercise Medicine (BASEM) and with input from One Dance and NIDMS. In terms of research to facilitate the proliferation of evidence base in dance medicine, One Dance lists calls for research, whilst NHS NIDMS clinics provide access to clinical dance medicine. The importance of the application of this growing field of dance medicine and science for the health and performance of dancers was recently outlined in an article “Raising the barre: how science is saving ballet dancers“.

On the international stage, the International Association for Dance Medicine & Science (IADMS) strives to promote an international network of communication between dance and medicine. To this end, IADMS will hold its 28th Annual Conference in Helsinki, Finland from October 25-28, 2018. In addition to extensive discussion of dance injuries, there will be presentations on “Sleep and Performance” and “Dance Endocrinology”.

So maybe Dance Medicine and Science is not so much the poor relation of Sports Medicine, rather showing the way in terms of integrating input between dancers, teachers and healthcare professionals to optimise the health of dancers and so enable dancers to perform their full potential.

References

Presentations

Fit to Dance? Report of National inquiry into dancers’ health.

Fit to Dance 2 Dance UK

One Dance

Your body your risk. Dance UK

Fit but fragile. National Osteoporosis Society

Bone mineral density in professional female dancers N. Keay, BJSM

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Dr N Keay BJSM 2018

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine and Science in Sports & Exercise 2017

Dancing through Adolescence Dr N Keay BJSM

Healthy Hormones Dr N Keay BASEM 2018

Dancers, Periods and Osteoporosis, Keay N, Dancers, Periods and Osteoporosis, Dancing Times, September 1995, 1187-1189

A study of Dancers, Periods and Osteoporosis, Keay N, Dance Gazette, Issue 3, 1996, 47

Raising the barre: how science is saving ballet dancers The Guardian 2018

International Association for Dance Medicine and Science Medicine & Science in Sports and Exercise

 

 

Relative Energy Deficiency in Sport (RED-S) 2018 update

What updates are presented in the IOC consensus statement on RED-S 2018?

Prevention

Awareness is the key to prevention. Yet RED-S continues to go unrecognised. Less than 50% of clinicians, physiotherapists and coaches are reported as able to identify the components of the female athlete triad. In a survey of female exercisers in Australia, half were unaware that menstrual dysfunction impacts bone health. Note that these concerning statistics relate to the female athlete triad. Lack of awareness of RED-S in male athletes is even more marked. RED-S as a condition impacting males, as well as females, was described in the initial IOC consensus statement published in 2014. However there is evidence of the occurrence of RED-S in male athletes pre-dating this.

Identification

Identifying an athlete/dancer with RED-S is not always straight forward. In dance or sports where being light weight confers a performance or aesthetic advantage, how can a coach/teacher distinguish between athletes who have this type of physique “naturally” and those who have disordered eating and are at risk of RED-S?  Equally, low energy availability could be a result either of intentional nutrition restriction to control body weight and composition, or an unintentional consequence of not matching an increase in energy expenditure (due to increased training load), with a corresponding increase in energy intake.

Performance effects

Performance is paramount to any athlete or dancer. Apart from physical ability, being driven and determined are important characteristics to achieve success. If weight loss is perceived as achieving a performance advantage, then this can become a competitive goal in its own right: in terms of the individual and amongst teammates. This underlies the interactive effect of psychological factors in the development and progression in the severity of RED-S.

There is both theoretical and practical evidence that short term low energy availability impairs athletic performance as the body is less able to undertake high quality sessions and benefit from the physiological adaptations to exercise. Within day energy deficits have been shown to have adverse effects in both male and female athletes in terms of impact on oestradiol/testosterone and cortisol concentrations. Failure to refuel with carbohydrate and protein promptly after a training session in male runners has been shown to have an adverse effect on bone turnover markers.

To underline the adverse performance effect of low energy availability, a recent study demonstrated that in female athletes, those with functional hypothalamic amenorrhea displayed decreased neuromuscular performance compared to their eumenorrhoeic counterparts. This adverse effect on performance is of particular concern where such skills are crucial in precisely those sports/dance where RED-S is most prevalent. Clearly this situation puts such athletes at increased injury risk, especially if associated with adverse bone mineral density (BMD) due to low energy availability.

Ironically the long term consequences of low energy availability produce adverse effects on body composition: increased fat/lean and reduction in BMD. In other words, the precise opposite effects of what an energy restricted athlete is trying to achieve. In terms of bone health, the lumbar spine is most sensitive to nutrition/endocrine factors (apart from rowers where mechanical loading can attenuate BMD loss at this site in RED-S). Suboptimal BMD is associated with an increased risk of bone injury and therefore impaired performance.

REDs
Keay BJSM 2017

Medical Assessment

Low energy availability is the fundamental issue driving the multi-system dysfunction in the endocrine, metabolic, haematological, cardiovascular, gastrointestinal, immunological and psychological systems in RED-S. However, there are practical issues with directly quantifying energy availability as this is subject to the inaccuracies of reliably measuring energy intake and output. Endocrine and metabolic markers have been shown to more objective indicators of low energy availability, which in turn are correlated to performance outcomes such as bone stress injury in male and female athletes. In the case of female athletes there is an obvious clinical indicator of sufficient energy availability: menstrual cycles. As there is no such obvious clinical sign in male athletes is this why RED-S is less frequently recognised? In both female and male athletes there is some degree of clinical variation: there is no absolute threshold cut off with a set temporal component of low energy availability resulting in amenorrhoea or low testosterone in males. Therefore the IOC recommends that individual clinical evaluation include discussion of nutrition attitudes and practices, combined with menstrual history for females and endocrine markers for male and female athletes will give a very clear indication if an athlete is at risk of/has RED-S.

 

Management

RED-S is a diagnosis of exclusion. Once medical conditions per se have been excluded, RED-S presents a multi-system dysfunction caused by a disrupted periodisation of nutrition/training/recovery. For an athlete the motivation to address these imbalances is to be in a position reach their full athletic potential. This attainment is compromised in RED-S.

Pharmacological interventions are not recommended as first line management in amenorrhoeic athletes. Oral contraception (OCP) masks amenorrhoea with withdrawal bleeds. OCP does not support bone health and indeed may exacerbate bone loss by suppressing further IGF-1. Although transdermal oestrogen, combined with cyclic progesterone does not down regulate IGF-1, nevertheless any hormonal intervention cannot be a long term solution, as bone loss will continue if energy availability is not addressed as a priority.

What next?

The IOC statement suggests further research should include studies with allocation of athletes to intervention groups, with assessment of effects over a substantial time period. Currently a study of competitive male road cyclists over a training/competition season is being undertaken to evaluate the effects of nutrition advice and off bike skeletal loading exercise. Crucially outcome measures will not only be based on bone health and endocrine markers, but measures of performance in terms of power production and race results.

To raise awareness and build support pathways as recommended in the IOC statement,  this is an on going process which requires communication between athlete/dancers, coaches/teachers, parents and healthcare professionals both medical and non medical working with male and female athletes.

References

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

Male Cyclists: bones, body composition, nutrition, performance BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Addiction to Exercise – what distinguishes a healthy level of commitment from exercise addiction? BJSM 2017

Sports Endocrinology – what does it have to do with performance? BJSM 2017

Within‐day energy deficiency and reproductive function in female endurance athletes Scandinavian Journal of Science and medicine in Sports 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine & Science in Sports & Exercise. 49(12):2478–2485, DEC 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Cyclists: Make No Bones About It BJSM 2018

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sports Nutrition and Exercise Metabolism 2017

Part 2: Health, Hormones and Human Performance take centre stage BJSM 2018

Cyclists: How to Support Bone Health?

Healthy Hormones BASEM 2018

 

 

 

Synergistic Interactions of Steroid Hormones

Slide1

The action of the sun on skin is the most effective way of making vitamin D. However, even walking around outside naked for 5 hours every day during UK winter months is not sufficient to make adequate vitamin D. Therefore, much to the relief of the audience at the recent BASEM Spring conference, this was not a strategy recommended by Dr Roger Wolman.

Vitamin D is a fat soluble steroid hormone. The majority of which is synthesised in the skin when exposed to ultraviolet B in sunlight, with a small contribution from dietary sources: this vitamin D3 molecule is then hydroxylated twice in the liver and then kidney to produce the metabolically active form of vitamin D. This activated steroid hormone binds to vitamin D receptors in various tissues to exert its influence on gene expression in these cells. The mono hydroxylated form of vitamin D is measured in the serum, as this has a long half life.

Does it matter having low levels of circulating vitamin D during winter months? What are the solutions if moving to warmer climates during the winter is (unfortunately) not feasible? What are the other hormones interact with vitamin D?

What are the beneficial effects of vitamin D, particularly in the athletic population?

Bone

Rickets and osteomalacia are conditions where vitamin D deficiency results in bone deformities and radiographic appearances are characterised by Looser zones, which in some ways are similar in appearance to stress fractures.

In a large prospective study of physically active adolescent girls, stress fracture incidence was found to have an inverse relationship with serum vitamin D concentrations. In adult female Navy recruits monitored during an 8 week training programme, those on vitamin D supplementation had a 20% reduction in stress fracture. However, oestrogen status was a more powerful risk factor at 91% in those recruits reporting amenorrhoea. Vitamin D is, itself, is a steroid hormone with range of systemic effects. As will be discussed below, its interaction with the sex steroid oestrogen has an important effect on bone turnover.

Immunity

Although sanatoriums, for those suffering with tuberculosis, were based on providing patients with fresh air, any beneficial effect was probably more due to vitamin D levels being boosted by exposure to sunlight. Certainly there are studies demonstrating the inhibitory effect of vitamin D on on slow growing mycobacteria, responsible for TB. What about the influence of vitamin D on other types of infection? In a recent publication, evidence was presented that supplementation with vitamin D prevented acute respiratory tract infections. This effect was marked in those with pre-existing low levels of vitamin D. In a study of athletes a concentration of 95 nmol/L was noted at the cut off point associated with more or less than one episode of illness. In another randomised controlled study of athletes, those supplemented with 5,000IU per day of vitamin D3 during winter displayed higher levels of serum vitamin D and had increased secretion of salivary IgA, which could improve immunity to respiratory infections.

Muscle

There is evidence that supplementing vitamin D3 at 4,000IU per day has a positive effect on skeletal muscle recovery in terms of repair and remodelling following a bout of eccentric exercise. In the longer term, dancers supplemented with 2,000IU over 4 months reported not only reduction in soft tissue injury, but an increase in quadriceps isometric strength of 18% and an increase of 7% in vertical jump height.

Synergistic actions of steroid hormones

No hormone can be considered in isolation. This is true for the network interaction effects between the steroid hormones vitamin D and oestrogen. In a study of professional dancers, there was found to be significant differences in serum vitamin D concentrations in dancers from winter to summer and associated reciprocal relationship with parathyroid hormone (PTH). In situations of vitamin D deficiency this can invoke secondary hypoparathyroidism. Although low levels of vitamin D were observed in the dancers, this was not a level to produce this condition. However, there was an increase in soft tissue injury during the winter months that could, in part, be linked to low vitamin D levels impacting muscle strength.

The novel finding of this study was that female dancers on the combined oral contraceptive pill  (OCP) showed significant differences, relative to their eumenorrhoeic counterparts not on the OCP, in terms of higher levels of vitamin D and associated reductions of bone resorption markers and PTH. The potential mechanism could be the induction by the OCP of liver enzymes to increase binding proteins that alter the proportion of bound/bioactive vitamin D.

This interaction between steroid hormones oestrogen and vitamin D could be particularly significant in those in low oestrogen states such as postmenpoausal women and premenarchal girls. Menarche can be delayed in athletes, so is there a case for vitamin D supplementation in young non-menstruating athletes? What is the situation for men? Do testosterone and vitamin D have similar interactions and therefore implications for male athletes with RED-S, where testosterone can be low?

Vitamin D is not simply a vitamin. It is a steroid hormone with multi-system effects and interactions with other steroid hormones, such as sex steroids, which are of particular relevance to athletes.

References

BASEM Spring Conference 2018 “Health, Hormones and Human Performance”

BASEM Spring Conference 2018 Part 2 “Health, Hormones and Human Performance”

Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits JBMR 2009

Vitamin D, Calcium, and Dairy Intakes and Stress Fractures Among Female Adolescents Arch Pediatr Adolesc Med 2012

A Single Dose of Vitamin D Enhances Immunity to Mycobacteria American Journal of Respiratory and Critical Care Medicine 2007

Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data BMJ 2017

Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes Exerc Immunol Rev. 2013

The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes J Sports Sci. 2016

A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy American Journal of Physiology 2015

The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study Journal of Science and Medicine in Sport 2014

Vitamin D status in professional ballet dancers: Winter vs. summer J Science and Medicine in Sport 2013

Health, Hormones and Human Performance Part 2

Endocrine and Metabolic aspects of Sports and Exercise Medicine are crucial determinants of health and human performance, from reluctant exerciser through to elite athlete and professional dancer. This is what the recent BASEM spring conference set out to demonstrate. The previous blog described functional disruption of Endocrine networks caused by non-integrated periodisation of the three key lifestyle factors of exercise/training, nutrition and recovery/sleep, can lead to adverse effects on health and athletic performance.

Slide1
Integrated periodisation of exercise, nutrition, recovery for optimisation of health and performance (Keay BJSM 2017)

Grace, aesthetic line and ethereal quality belie the athletic prowess required in ballet. What are the Endocrine, metabolic and bone health consequences for this unique group of athletes? Dr Roger Wolman (Medical Advisor to National Institute for Dance Medicine and Science) returned to the important topic of insufficient energy availability in sport/dance where being lightweight confers a performance advantage, resulting in dysfunction in multiple endocrine axes. Dr Wolman discussed his recent research studies in dancers revealing an intriguing synergistic action between oestrogen and vitamin D, which is itself a steroid hormone. Evidence was presented to demonstrate how being replete in vitamin D has beneficial effects on bone, immunity and muscle function. Thus it is key in preventing injury and supporting health in athletes, with particular relevance in premenarchal and postmenopausal women, who are in relative oestrogen deficient states. This presentation will certainly change my clinical practice and, I am sure, that of many in the audience, in ensuring that athletes/patients are vitamin D replete. This may have to be achieved in the form of strategic use of sports informed vitamin D supplementation, given that even walking naked for 5 hours a day outside during UK winter, would not stimulate enough vitamin D production. Therefore, to the relief of many in the audience, Dr Wolman did not recommend this strategy.

Dr Kate Ackerman (member of RED-S IOC working group) explained why we should all tap into our inner endocrinologist. Sport and Exercise Medicine (SEM) goes far beyond diagnosing and treating injury. Is there any underlying endocrine cause for suboptimal health, performance or injury? Be this an endocrine diagnosis that should not be missed, or a functional endocrine dysfunction due to relative energy deficiency in sports (RED-S). Dr Ackerman explained the importance of the multidisciplinary team in both identifying and supporting an athlete experiencing the consequences of RED-S. New research from Dr Ackerman’s group was presented indicating the effects of RED-S on both health and athletic performance.

Females now have combative roles alongside their male counterparts. What are the implications of this type of intensive exercise training? Dr Julie Greaves (Research Director of the ministerial women in ground close combat research programme) presented insightful research revealing that differences in the geometry of bone in men and women can predispose towards bone stress injury and account for increased incidence in this type of injury in female recruits.

Lunchtime discussion and debate was focused on the determinants of athletic gender, lead by Dr Joanna Harper and Professor Yannis Pitsiladis (International Federation of Sports Medicine). Rather than relying on genetic sex, testosterone concentration was proposed as the criteria for determining whether an athlete competes in male or female events. That testosterone concentration is linked to performance was demonstrated in a study published last year in the BMJ where female athletes in the upper tertile of testosterone were shown to have a performance advantage in certain strength based track and field disciplines. This could potentially be an objective, functional metric used to determine sporting categories for transgender and intersex athletes. The only current uncertainty is how previously high levels of testosterone seen in male, or intersex athletes would have already had an impact on physiology, if this athlete then wished to compete as female and therefore lower testosterone levels with medication.

Nutrition is a key component in optimising health and performance through the Endocrine system. Dr Sophie Killer (English Institute of Sport) explained practical implications for athletes. In a study stimulating a training camp, there were distinct differences between athletes on different regimes of carbohydrate intake in terms of endocrine markers and psychological effects. Those athletes on restricted carbohydrate intake fared worse.

Insulin insensitivity is the underlying pathological process in developing type 2 diabetes mellitus (T2DM) and metabolic syndrome. What is the crucial lifestyle intervention to combat this? Dr Richard Bracken (Swansea University) presented the science behind why and how exercise improves blood glucose control and therefore ultimately risk of developing the macro and microvascular complications of diabetes. T2DM is an increasing health issue in the population, which has to be addressed beyond reaching for the prescription pad for medication. Dr Bracken outlined some effective strategies to encourage the reluctant exerciser to become more active. Having worked myself in NHS diabetic clinics over many years, this was a key presentation at the conference to demonstrate that SEM goes far beyond a relatively small group of elite athletes. Highlighting the crucial role of physical activity in supporting health and performance through optimisation of endocrine networks: uniting the elite athlete and the reluctant exerciser.

One road to Rome
One Road to Rome (BJSM Keay 2017)

Motivate2Move initiative aims to shift the emphasis from treating disease, to preventing disease. Dr Brian Johnson presented the excellent resource for healthcare professionals to encourage, motivate and educate patients in order to consider exercise as an effective and enjoyable way to improve health.

Hormones play a key role in health and human performance, applicable to all levels of exerciser from reluctant exerciser to elite athlete.

FactorsWordCloud4

References

Health, Hormones and Human Performance BASEM Spring Conference

Video of presentation on Endocrine and Metabolic aspects of Sport and Exercise Medicine from BASEM Spring Conference

Sports Endocrinology – what does it have to do with performance? Keay BJSM 2017

Lifestyle Choices for optimising health: exercise, nutrition, sleep Keay BJSM 2017

One road to Rome: Exercise Keay, BJSM 2017

 

 

Health, Hormones and Human Performance Part 1

How hormones determine health and athletic performance

Endocrine and Metabolic aspects of Sports and Exercise Medicine are crucial determinants of health and human performance, from reluctant exerciser through to elite athlete and professional dancer. This is what I set out to demonstrate as the chair of the recent British Association of Sport and Medicine conference, with insightful presentations from my colleagues whom I had invited to share their research and practical applications of their work. The audience comprised of doctors with interest in sport and exercise medicine, representatives from the dance world, research scientists, nutritionists, physiotherapists, coaches and trainers. In short, all were members of multi-disciplinary teams supporting aspiring athletes. The importance of the conference was reflected in CDP awards from FSEM, BASES, Royal College of Physicians (RCP), REP-S and endorsement for international education from BJSM and National Institute of Dance Medicine and Science (NIDMS).

Exercise is a crucial lifestyle factor in determining health and disease. Yet we see an increasing polarisation in the amount of exercise taken across the general population. At one end of the spectrum, the increasing training loads of elite athletes and professional dancers push the levels of human performance to greater heights. On the other side of the spectrum, rising levels of inactivity, in large swathes of the population, increase the risk of poor health and developing disease states. Which fundamental biological processes and systems link these groups with apparently dichotomous levels of exercise? What determines the outcome of the underlying Endocrine and metabolic network interactions? How can an understanding of these factors help prevent sports injuries and lead to more effective rehabilitation? How can we employ Endocrine markers to predict and provide guidance towards beneficial outcomes for health and human performance?

If you weren’t able to come and participate in the discussion, these are some topics presented. My opening presentation (see video below) set the scene, outlining why having an optimally functioning Endocrine system is fundamental to health and performance. Conversely, functional disruption of Endocrine networks occurs with non integrated periodisation of the three key lifestyle factors of exercise/training, nutrition and recovery/sleep, which can lead to adverse effects on health and athletic performance.

In the case of an imbalance in training load and nutrition, this can manifest as the female athlete triad, which has now evolved into relative energy deficiency in sports (RED-S) in recognition of the fact that Endocrine feedback loops are disrupted across many hormonal axes, not just the reproductive axis. And, significantly, acknowledging the fact that males athletes can also be impacted by insufficient energy availability to meet both training and “housekeeping” energy requirements. Why and how RED-S can affect male athletes, in particular male competitive road cyclists, was discussed, highlighting the need for further research to investigate practical and effective strategies to optimise health and therefore ultimately performance in competition.

A degree of overlap and interplay exists between RED-S (imbalance in nutrition and training load), non functional over-reaching and over-training syndrome (imbalances in training load and recovery). Indeed research evidence was presented suggesting that RED-S increases the risk of developing over-training syndrome. In these situations of functional disruption of the Endocrine networks, underlying Endocrine conditions per se should be excluded. Case studies demonstrated this principle in the diagnosis of RED-S. This is particularly important in the investigation of amenorrhoea. All women of reproductive age, whether athletes or not, should have regular menstruation (apart from when pregnant!), as a barometer of healthy hormones. Indeed, since hormones are essential to drive positive adaptations to exercise, healthy hormones are key in attaining full athletic potential in any athlete/dancer, whether male or female. Evidence was presented from research studies for the role of validated Endocrine markers and clinical menstrual status in females as objective and quantifiable measures of energy availability and hence injury risk in both male and female athletes.

Slide1
Triumvirate of external factors impacting Endocrine system and hence performance

Alongside training metrics, if female athletes recorded menstrual pattern (as Gwen Jorgensen recently showed on her Training Peaks) and all athletes kept a biological passport of selected Endocrine markers; this could potentially identify at an early stage any imbalances in the triumvirate of training load, nutrition and recovery. Pre-empting development of RED-S or over-training syndrome, supports the maintenance of healthy hormones and hence optimal human performance.

Look out for presentations from speakers which will be uploaded on BASEM website shortly.

References

Video of presentation on the Endocrine and Metabolic Aspects of Sports and Exercise Medicine BASEM conference “Health, Hormones and Human Performance”

Study of hormones, body composition, bone mineral density and performance in competitive male road cyclists Investigation of effective and practical nutrition and off bike exercise interventions

Sports Endocrinology – what does it have to do with performance? Keay BJSM 2017

 

 

 

Male Athletes: the Bare Bones of Cyclists

Chris Boardman is an Olympic gold medal winner and world record breaking cyclist. However, he explains in his biography that he retired in his early thirties with weak bones and low testosterone. At the time he was treated with medication aimed at improving his bone strength, but this severely impacted his performance on the bike.

What was the cause of this superlative male athlete’s unhealthy condition that ultimately lead to his retirement? Is this still an issue for male cyclists today? Is it limited to elite professional riders?

Slide1
Periodisation of key training factors support the Endocrine system to optimise performance

In 2014 the IOC published a description of relative energy deficiency in sports (RED-S), where nutrition intake is insufficient to cover training demands and the basic “housekeeping” activities of the body. This induces an energy-saving mode that impacts health and therefore athletic performance. The female athlete triad had been previously described as the combination of disordered eating, menstrual disruption and impaired bone health. RED-S goes beyond the female athlete triad to include a broader range of  impacts on systems other than just the bones and female hormone production. Significantly RED-S includes male athletes. Today, Chris Boardman would be diagnosed with RED-S.

Has this new information improved the identification and support of male athletes at risk of RED-S? In a recent pilot study, 5 out of 10 competitive amateur riders (Category 2 and above) were in the lowest age-matched percentile of body fat and 9 out 10 where in the lowest 6% relative to the population of similar age. Significantly, 7 out of 10 riders had below-average for age bone mineral density (BMD) in the lumbar spine, with two males having bone densities that would be low for an 85 year old.

Why is poor bone health a particular risk for competitive male cyclists? Depending on the type of exercise, beneficial adaptations include mechanical strengthening of specific parts of the skeletal system. For example, assuming good nutrition, runners tend to have strong hips, whereas rowers have more robust spines in terms of BMD and bone microarchitecture. Conversely the non-weight-bearing nature of cycling and the generally lower level of upper-body musculature reduce the mechanical loading forces though the spine: low osteogenic (bone building) stimuli. Although similar to swimming, in the sense that body weight is supported in the water, the major difference between these two forms of exercise is that in cycling, particularly for climbing, low body mass confers a performance advantage. This brings in the additional factor for bone health of potential inadequacies in nutrition and therefore consequences on hormone production.

An optimal balance of training, nutrition and recovery drives beneficial adaptations to exercise throughout the body. The body’s Endocrine system releases hormones that stimulate positive changes, such as the process of improving the efficiency of delivering and utilising oxygen and nutrients to exercising tissues, including the skeletal system. Any imbalances in periodisation between the three inputs of training, nutrition and recovery will compromise health and athletic performance.

Cyclists are at particular risk of insufficient fuelling. This may be an intentional attempt to maintain low body weight, which can lead to healthy eating becoming an unhealthy orthorexic pattern, where vital food groups for endurance sport, such as carbohydrates are excluded. There is also a practical element to fuelling adequately during long rides and refuelling afterwards. Consistency of nutrition throughout the day has been highlighted in a recent study of male endurance athletes where although an average 24 hour intake may be sufficient, if there are any significant deficits during this time, then this is reflected in increased adverse impact on catabolic Endocrine makers. In another study of male athletes if refuelling with carbohydrate and protein after training did not occur promptly, this lead to an increase in bone resorption over formation markers.

Recovery is an essential part of a training schedule, because the adaptations to exercise occur during rest. Sleep, in particular, is a major stimulus for growth hormone release, which drives positive adaptive changes in terms of body composition and bone turnover. Conversely, insufficient recovery time due to a packed schedule of training and work, places extra stresses on the Endocrine system. Getting to bed half an hour earlier than usual every day quickly adds up to an extra night’s sleep.

Does it matter if some areas of the skeleton are weaker than others? Yes, because this increases your risk of fracture, not just if you come off your bike, but also with relatively low force impacts. In the case of runners and triathletes, bone stress injuries are more likely to occur as an early warning sign of impaired bone health due to RED-S. Since low impact forces are absent in cycling, it may take a crash to reveal the strength of a rider’s bones. Studying the list of injuries in elite cyclists there are many fractures, with longer recovery time for vertebral fractures. So potentially cyclists can develop more severe bone health issues than other athletes, before becoming aware of the situation.

If you are a male cyclist, what can you do to prevent issues of bone health and risk of developing RED-S and suboptimal performance on the bike? Watch this space! A study is planned to investigate practical and effective strategies to optimise health and performance on the bike. In meantime there will be more discussion on “Health, Hormones and Human Performance” at the BASEM conference 22 March. All welcome, including athletes and coaches, alongside healthcare professional working with athletes.

References

Mechanisms for optimal health…for all athletes! BJSM 2017

Optimal health: including female athletes! Part 1 Bones BJSM 2017

Lifestyle Choices for optimising health: exercise, nutrition, sleep BJSM 2017

Sports Endocrinology – what does it have to do with performance? BJSM 2017

Relative Energy Deficiency in Sports (RED-S) Practical considerations for endurance athletes

Within-day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Sleep for health and sports performance BJSM 2017

Health and Performance during Lifespan: latest research

LifeSeasonDay

Your lifespan depends on genetic and key lifestyle choices

Lifespan is dependent on a range of genetic factors combined with lifestyle choices. For example a recent study reported that an increase in one body mass index unit reduced lifespan by 7 months, whilst 1 year of education increased lifespan by 11 months. Physical activity was shown to be a particularly important lifestyle factor through its action on preventing age-related telomere shortening and thus reducing of cellular ageing by 9 years. Nevertheless, even though males and females have essentially identical genomes, genetic expression differs. This results in different disease susceptibilities and evolutionary selection pressures. More studies involving female participants are required!

Circadian clock

Much evidence is emerging about the importance of paying respect to our internal biological clocks when considering the timing of lifestyle factors such as eating, activity and sleep. For example intermittent fasting, especially during the night, and time restricted eating during the day enables metabolic flexibility. In other words, eating within a daylight time window will support favourable metabolism and body composition. No midnight snacks!

For athletes, even more care needs be given to timing of nutrition to support athletic performance. In the short term there is evidence that rapid refuelling after training with a combination of carbohydrate and protein favours a positive balance of bone turnover that supports bone health and prevents injury in the longer term. Periodised nutrition over a training season, integrated with exercise and recovery, is important in order to benefit from training adaptations and optimise athletic performance.

Protein intake in athletes and non athletes

Recovering from injury can be a frustrating time and some athletes may be tempted to reduce food intake to compensate for reduced training. However, recommendations are to maintain and even increase protein consumption to prevent a loss of lean mass and disruption of metabolic signalling. In the case of combined lifestyle interventions, such as nutrition and exercise aimed at reducing body weight, these should be directed at improving body composition. Adequate protein intake alongside exercise will maintain lean mass in order to minimise the risk of sarcopenia and associated bone loss which can occur during hypocaloric regimes. Good protein intake is important for bone health to support bone mineral density and reduce the risk of osteoporosis and fracture.

Adolescent Athlete

In the young athlete, integrated periodisation of training, nutrition and recovery is of particular importance, not only to support health and performance, but as an injury prevention strategy.  Sufficient sleep and nutrition to match training demands are key.

Differences between circadian phenotype and performance in athletes

For everyone, whether athlete or reluctant exerciser, balancing and timing key lifestyle choices of exercise, nutrition and sleep are key for optimising health and performance. However there are individual differences when it comes to the best time for athletes to perform, according to circadian phenotype/chronotype. In other words personal biological clocks which run on biological time. An individual’s performance can vary by as much as 26% depending on the time of day relative to one’s entrained waking time.

Later in Life

Ageing can be can be confused with loss of fitness and ability to perform activities of daily living. Although a degree of loss of fitness does occur with increasing age, this can be prevented to a certain degree and certainly delayed with physical activity. Exercise attenuates sarcopenia, which supports bone mineral density with the added benefit of improved proprioception, helping to reduce risk of falls and potential fracture; not to mention the psychological benefits of exercise.

 

For more discussion on Health Hormones and Human Performance come to British Association of Sport and Exercise Medicine Spring Conference 

BAsem2018_SpringConf_BJSM

References

Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity Nature Communications 2017

Physical activity and telomere length in U.S. men and women: An NHANES investigation Preventive Medicine 2017

The landscape of sex-differential transcriptome and its consequent selection in human adults BMC Biology 2017

Temporal considerations in Endocrine/Metabolic interactions Part 1 British Journal of Sport and Exercise Medicine, October 2017

Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting Obesity 2017

Temporal considerations in Endocrine/Metabolic interactions Part 2 British Journal of Sport and Exercise Medicine, October 2017

Time-restricted eating may yield moderate weight loss in obesity Endocrine Today 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Periodized Nutrition for Athletes Sports Medicine 2017

Internal Biological Clocks and Sport Performance British Journal of Sport and Exercise Medicine, October 2017

Nutritional support for injuries requiring reduced activity Sports in Science Exchange 2017

Balance fat and muscle to keep bones healthy, study suggests NTU October 2017

Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis Journal of the American College of Nutrition 2017

Too little sleep and an unhealthy diet could increase the risk of sustaining a new injury in adolescent elite athletes Scandinavian Journal of Medicine & Science in Sports

Sleep for health and sports performance British Journal of Sport and Exercise Medicine, 2017

The impact of circadian phenotype and time since awakening on diurnal performance in athletes Current Biology

Successful Ageing British Association of Sport and Exercise Medicine 2017

Focus on physical activity can help avoid unnecessary social care BMJ October 2017

Biochemical Pathways of Sarcopenia and Their Modulation by Physical Exercise: A Narrative Review Frontiers in Medicine 2017

 

Relative Energy Deficiency in Sports (RED-S) Practical considerations for endurance athletes

Slide1

Introduction Relative Energy Deficiency in Sport (RED-S) has evolved from the previously described Female Athlete Triad (menstrual dysfunction, disordered eating and decreased bone mineral density). The reason for the development of this clinical model of RED-S is that it has become apparent that low energy availability, ie not eating enough calories to support the combined energy demands of health and training, has more widespread adverse impacts on health and consequently performance in athletes and dancers than previously recognised. Furthermore, the RED-S model includes both male and female athletes– so if you are a male athlete, please do not stop reading! Low energy availability can impact male and female exercises of all levels and of all ages. Young developing athletes can be at particular risk of RED-S as this represents a time of growth and development, which entails many nutritional demands, in addition to those to support training. This represents a time to set up the template for health into adulthood.

Why does RED-S occur? RED-S is particularly prevalent in sports where low body weight confers a performance advantage or for aesthetic reasons. For example: long distance running, triathlon, gymnastics, dance and cycle road racing. However, RED-S could also occur not as an intentional strategy to control body weight, but rather during cycles of increased training load where periodised nutrition has not been synchronised with the increased demand on the body.

What is RED-S? Fundamentally there is a mismatch between food intake (in terms of energy and micronutrients) and the demand for nutrition required to cover expenditure, both of exercise training and for basic “housekeeping” tasks in the body to maintain health. If there is insufficient energy availability, then the body switches into an energy saving mode. This “go slow” mode has implications for hormone production and metabolic processes, which impacts all systems throughout the body. The reason why RED-S was originally described as the Female Athlete Triad is that in women the “energy saving mode” involves menstrual periods being switched off: a pretty obvious external sign as all women of child bearing age should have periods (apart from when pregnant). Low oestrogen levels have an adverse effect on bone health, resulting in decrease in bone mineral density. This effectively renders young women at increased risk of both soft tissue and bone injury, as seen in post-menopausal women. As described in the IOC statement published 2014 and updated 2018 in British Journal of Sports Medicine , the Female Athlete Triad is now recognised as just the tip of the iceberg. Disruption of hormone levels does not only adversely impact menstrual periods and bone health. There are knock on effects impacting the immune system, cardiovascular system, muscles, nervous system, gut health and the list goes on. Importantly, it is recognised that this situation is also seen in male athletes: low energy availability resulting in adverse health and performance consequences. Although exercise/dance is known to have many beneficial effects on health, all these beneficial effects are negated by low energy availability. For example, whether or not a sport is weight bearing, which traditionally improves bone health, in RED-S the predominant effect of disrupted hormones is to decrease bone density, leading to increased fracture risk.

Male cyclists Road cyclists are doubly at risk of the detrimental effects of RED-S on bone health. Performing a non-weight bearing form of exercise deprives the skeleton of the positive effect of mechanical skeletal loading on bone health. Furthermore being low body weight is a performance advantage for road cyclists when it comes to riding up hills/mountains in order to produce higher Watts/Kg over 60 minutes (60 minute functional threshold power FTP). This puts cyclists at risk of developing low energy availability, endocrine dysfunction and consequent impairment of bone health. In weight bearing sport the warning sign of suboptimal bone health if often stress fracture. This will be absent in cyclists. Hence low energy availability may go unrecognised until a bike fall results in serious fracture and indeed fractures appears as the most common type of injury amongst cyclists. Furthermore, the lumbar spine is recognised as the site most susceptible to endocrine dysfunction in RED-S. Vertebral fracture is recorded as the type of fracture in cyclists requiring the longest time off the bike. In a recent study, it was found that the factor most indicative of 60 minute FTP, was training load and NOT low body fat. Furthermore, training in low energy availability state will not result in the expected 60 minute FTP performance. So far more effective to train with sufficient nutrition on board, rather than restricting intake which will render training less effective.

What is the significance of RED-S? Do these effects of RED-S matter? Yes: there is a detrimental effect on not only health, but on all elements of sports performance. These include an inability to improve as expected in response to training and increased risk of injury. In the long-term there are potential implications for health with inability to reach peak bone mass for young athletes and at the other end of the scale, irreversible bone loss being seen in retired athletes.

Here is a summary of the potential impact of RED-S:

• Endocrine dysfunction: decreased training response

• Metabolic disruption: decreased endurance performance

• Bone health: increased risk bone stress injuries

• Decreased functional immunity: prone to infection

• Gut malfunction: impaired absorption of nutrients

• Decreased neuromuscular co-ordination: injury risk

• Psychological impact: inability to recognise risk developing RED-S

As you can see, these adverse effects are all relevant to performance in endurance sport.

What to do if you are concerned you may have RED-S?

Health Considerations:

• Women: even if your adult weight is steady, if you are a female athlete of reproductive age whose periods have stopped, then do not ignore this! In the first instance, you need to exclude any other causes (for example polycystic ovary syndrome and other hormone issues) in conjunction with your doctor. Then take a look at how you are eating in line with your training load – see the nutritional considerations section below.

• Men: if you are a male athlete struggling to improve sport performance, then review both your training load and your periodised nutrition and recovery. If the cause is RED-S then do not wait until your sport performance drops or you get injured before taking action. You may also want to consider having your testosterone levels measured to check that these are in the normal range.

Nutritional Considerations: From colleague Jo Scott-Dalgleish BSc (Hons), mBANT, CNHC

It is important to consider whether the energy deficiency that you are experiencing is intentional or unintentional.

Intentional: you may be deliberately restricting your calorie intake to lose weight and body fat, although you are already a healthy weight, as you believe this will improve your power-to-weight ratio or run speed.

  • If you are trying to lose weight – or anxious about gaining weight – and experiencing issues with hormones (such as missing your periods or not experiencing morning erections) or bone health (such as getting a stress fracture) or finding that your performance is declining rather than improving, it may be time to seek support.
  • This is particularly important if your eating patterns have become disordered, eg exclusion of multiple food groups, binge eating and/or purging, or deliberately avoiding social situations around food.
  • Please visit the resources section of an excellent campaign website that has been put together to help athletes talk more openly about their experiences with food, disordered eating and RED-S and find help: https://trainbrave.org/resources/.
  • Another great resource to learn more about RED-S and how it can adversely affect your health is http://health4performance.co.uk/athlete-dancer/

Unintentional: eating fewer calories than your body needs when you are training hard is common in endurance athletes and often not deliberate.

  • You may not yet be experiencing the symptoms of RED-S outlined as above, but you are greatly at risk of doing so if you continue to under-eat relative to your training over a period of months or years.
  • You do not need to be losing weight to be energy deficient, as your body’s metabolism adjusts to a lower intake but compromises on other functions while your weight stays the same. For example, you may experience constipation or bloating due to slowed digestive function. Here are some tips to help you meet your energy needs.

Here are some tips to help you to better manage your energy intake if you are at unintentional risk of RED-S.

  • Track your food intake vs energy expenditure for a short period. Use My Fitness Pal or a similar app to track these daily over the course of week. On any day when you train, if you are consuming fewer than 2500 calories as a male endurance athlete and 2000 calories as a female endurance athlete after taking your energy expenditure through training into account, your intake is likely to be inadequate as these are the guidelines for the general population. Use this data to learn more about appropriate food choices and serving sizes and introduce some changes to increase your intake in line with your training load. But I do not suggest using apps like these on a long-term basis as they may encourage an unhealthy obsession with your food intake.
    • Periodise your carbohydrate intake in line with your training. Increase your intake of starches and sugars (including vegetables and fruit) on your heavier training days. A low daily carbohydrate intake might be in the range of 2-4 g/kg of body weight. This is OK for lower volume training days but should be increased to 5-8 g/kg when training for 2-3 hours or more in a single day. This would include use of sports nutrition products like bars, gels and sports drinks during training. Again, use an app like My Fitness Pal for a week to help you assess your carbohydrate intake.
  • Pay attention to your recovery nutrition. Consuming 15-25g of protein and 45-75g of carbohydrate in the hour after exercise, whether as a snack or as part of a meal will help you to each your energy intake goals, restock your glycogen stores for your next training session and protect lean muscle mass.
  • Avoid excluding foods, whole food groups or following ‘fad diets’. Unless you have a genuine allergy or a diagnosed medical condition such as coeliac disease or lactose intolerance. Or you have been advised to avoid certain foods by a dietician or other well-qualified nutrition practitioner to help manage a health condition such as Irritable Bowel Syndrome. If you are vegetarian or vegan, see my blog here [link to https://www.endurancesportsnutritionist.co.uk/blog/vegan-diets-guide-endurance-athlete/] for tips on ensuring a well-balanced approach.
  • Focus on nutrient density. Make good quality food choices to help you get enough vitamins and minerals as well as carbohydrates, protein, fat and fibre. Try to eat fresh, minimally processed foods rather than too much packaged food, including 3-5 servings of vegetables and 2-3 pieces of fresh fruit each day.

If you are experiencing relative energy deficiency, avoid following approaches like fasted training, where the training benefits are likely to be outweighed by the pitfalls of inadequate calorie intake. I also suggest avoiding low carb-high fat diets (LCHF) due to potential adverse effects on thyroid hormones, particularly T3, which may slow down metabolism and impact on performance. It can also be difficult to obtain adequate calories from these types of diets due to the near exclusion of a whole food group – which is why they may be very effective for weight loss in people who are overweight – and the lack of carbohydrate may harm performance through a loss of metabolic flexibility, ie ability to utilise carbohydrate as fuel when required for high intensity efforts.

Conferences in Sport/Dance, Exercise Science and Medicine 2018

References

Raising Awareness of RED-S in Male and Female Athletes and Dancers Dr N. Keay, British Journal of Sport Medicine 2018

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Dr N. Keay, British Journal of Sport Medicine 2018

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. Keay N, Francis G, Hind K. BMJ Open Sport & Exercise Medicine 2018

Optimal health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine 2017

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N. Keay, British Journal of Sport Medicine 2017

Optimal Health: Especially Young Athletes! Part 3 – Consequences of Relative Energy Deficiency in Sports Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Mechanisms for optimal health…for all athletes! Dr N. Keay, British Journal of Sport Medicine 2017

The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S) British Journal of Sports Medicine 2014

Nutritional considerations for vegetarian endurance athletes Jo Scott-Dalgleish, Endurance Sports Nutrition 2017

Temporal considerations in Endocrine/Metabolic interactions Part 1

LifeSeasonDay

It is not a simple question of what, but when we eat, sleep and exercise.

The Endocrine system displays temporal variation in release of hormones. Integrating external lifestyle factors with this internal, intrinsic temporal dimension is crucial for supporting metabolic and Endocrine health.

Amplitude and frequency of hormonal secretion display a variety of temporal patterns:

  • Diurnal variation, synchronised with external light/dark. Orchestrated by a specific area of the hypothalamus, the neuroendocrine gatekeeper.
  • Circadian rhythm, roughly 24-25 hours which can vary with season according to duration of release of melatonin from the pineal gland.
  • Infradian rhythms longer than a day, for example lunar month seen in patterns of hypothalamic-pituitary-ovarian axis hormone release during the menstrual cycle.
  • Further changes in these temporal release and feedback patterns occur over a longer timescale during the lifespan.

Hormones influence gene expression and hence protein synthesis over varying timescales outlined above. The control system for hormone release is based on interactive feedback loops. The hypothalamus is the neuroendocrine gatekeeper, which integrates external inputs and internal feedback.  The net result is to maintain intrinsic biological clocks, whilst orchestrating adaptations to internal perturbations stimulated by external factors such as sleep pattern, nutrition and exercise.

Circadian alignment refers to consistent temporal patterns of sleep, nutrition and physical activity. Circadian misalignment affects sleep-architecture and subsequently disturbs the interaction of metabolic and Endocrine health. This includes gut-peptides, glucose-insulin interaction, substrate oxidation, leptin & ghrelin concentrations and hypothalamic-pituitary-adrenal/gonadal-axes. The main stimuli for growth hormone release are sleep and exercise. Growth hormone is essential for supporting favourable body composition. These integrated patterns of environmental factors may have a more pronounced effect on those with a genetic predisposition or during crucial stages of lifespan. For example curtailed sleep during puberty can impact epigenetic factors such as telomere length and thus may predispose to metabolic disruption in later life. Regarding activity levels, there are strong relationships between time spent looking at screens and markers, such as insulin resistance, for risk of developing type 2 diabetes mellitus in children aged 9 to 10 years.

In addition to adverse metabolic effects set in motion by circadian misalignment, bone turnover has also shown to be impacted. Circadian disruption in young men resulted in uncoupling of bone turnover, with decreased formation and unchanged bone resorption as shown by monitoring bone markers. In other words a net negative effect on bone health, which was most pronounced in younger adult males compared with their older counterparts. These examples underline the importance of taking into account changes in endogenous temporal patterns during the lifespan and hence differing responses to external lifestyle changes.

For male and female athletes, integrated periodised training, nutrition and recovery has to be carefully planned over training seasons to support optimal adaptations in Endocrine and metabolic networks to improve performance. Training plans that do not balance these all these elements can result in underperformance, potentially relative energy deficiency in sport and consequences for health in both short and long term.

Part 2 will consider the longer term consequences and interactions of these temporal patterns of lifestyle factors, including seasonal training patterns in male and female athletes, on the intrinsic biochronometry controlling the Endocrine and metabolic networks during lifespan.

For further discussion on Health, Hormones and Human Performance, come to the BASEM annual conference

References

Sports Endocrinology – what does it have to do with performance? Dr N.Keay, British Journal of Sports Medicine 2017

One road to Rome: Metabolic Syndrome, Athletes, Exercise Dr N. Keay

Metabolic and Endocrine System Networks Dr N. Keay

Endocrine system: balance and interplay in response to exercise training Dr N.Keay

Sleep for health and sports performance Dr N.Keay, British Journal of Sports Medicine 2017

Factors Impacting Bone Development Dr N. Keay

Sleep, circadian rhythm and body weight: parallel developments Proc Nutr Soc

Sleep Duration and Telomere Length in Children Journal of Paediatrics 2017

Screen time is associated with adiposity and insulin resistance in children Archives of Disease in Childhood

Circadian disruption may lead to bone loss in healthy men Endocrine today 2017

Successful Ageing Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Clusters of Athletes – A follow on from RED-S blog series to put forward impact of RED-S on athlete underperformance Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Optimal Health: For All Athletes! Part 4 – Mechanisms Dr N. Keay, British Association of Sport and Exercise Medicine 2017