Raising Awareness of RED-S in Male and Female Athletes and Dancers

Health4Performance is a recently developed BASEM open access educational resource

This is a world premier: a resource developed for and by athletes/dancers, coaches/teachers, parents/friends and healthcare professionals to raise awareness of Relative Energy Deficiency in Sport (RED-S)

What?

Optimal health is required to attain full athletic potential. Low energy availability (LEA) can compromise health and therefore impair athletic performance as described in the RED-S clinical model.

Dietary energy intake needs to be sufficient to cover the energy demands of both exercise training and fundamental physiological function required to maintain health. Once the energy demands for training have been covered, the energy left for baseline “housekeeping” physiological function is referred to as energy availability (EA). EA is expressed relative to fat free mass (FFM) in KCal/Kg FFM.  The exact value of EA to maintain health will vary between genders and individuals, roughly equivalent to resting metabolic rate of the individual athlete/dancer. LEA for an athlete or dancer will result in the body going into “energy saving mode” which has knock on effects for many interrelated body systems, including readjustment to lower the resting metabolic rate in the longer term. So although loss in body weight may be an initial sign, body weight can be steady in chronic LEA due to physiological energy conservation adaptations. Homeostasis through internal biological feedback loops in action.

The most obvious clinical sign of this state of LEA in women is cessation of menstruation (amenorrhea). LEA as a cause of amenorrhoea is an example of functional hypothalamic amenorrhoea (FHA). In other words, amenorrhoea arising as a result of an imbalance in training load and nutrition, rather than an underlying medical condition per se, which should be excluded before arriving at a diagnosis of FHA. All women of reproductive age, however much exercise is being undertaken, should have regular menstrual cycles, which is indicative of healthy hormones. This explains why LEA was first described as the underlying aetiology of the female athlete triad, as women in LEA display an obvious clinical sign of menstrual disruption. The female athlete triad is a clinical spectrum describing varying degrees of menstrual dysfunction, disordered nutrition and bone mineral density. However it became apparent that the clinical outcomes of LEA are not limited to females, nor female reproductive function and bone health in female exercisers. Hence the evolution of the clinical model of RED-S to describe the consequences of LEA on a broader range of body systems and including male athletes.

A situation of LEA in athletes and dancers can arise unintentionally or intentionally. In the diagram below the central column shows that an athlete where energy intake is sufficient to cover the demands from training and to cover basic physiological function. However in the column on the left, although training load has remained constant, nutritional intake has been reduced. This reduction of energy intake could be an intentional strategy to reduce body weight or change body composition in weight sensitive sports and dance.  On the other hand in the column on the right, training load and hence energy demand to cover this has increased, but has not been matched by an increase in dietary intake. In both these situations, whether unintentional or intentional, the net results is LEA, insufficient to maintain health. This situation of LEA will also ultimately impact on athletic performance as optimal health is necessary to realise full athletic potential.

Slide1

Although LEA is the underlying aetiology of RED-S, there are many methodological and financial issues measuring LEA accurately in “free living athletes“. In any case, the physiological response varies between individuals and depends on the magnitude, duration and timing of LEA. Therefore it is more informative to measure the functional responses of an individual to LEA, rather than the value calculated for EA. As such, Endocrine markers provide objective and quantifiable measures of physiological responses to EA. These markers also reflect the temporal dimension of LEA; whether acute or chronic. In short, as hormones exert network effects, Endocrine markers reflect the response of multiple systems in an individual to LEA. So by measuring these key markers, alongside taking a sport specific medical history, provides the information to build a detailed picture of EA for the individual, with dimensions of time and magnitude of LEA. This information empowers the athlete/dancer to modify the 3 key factors under their control of training load, nutrition and recovery to optimise their health and athletic performance.

Slide1

Why?

Who is at risk of developing RED-S? Any athlete involved in sports or dance where being light weight confers a performance or aesthetic advantage. This is not restricted to elite athletes and dancers. Indeed the aspiring amateur or exerciser could be more at risk, without the benefit of a support team present at professional level. Young athletes are at particular risk during an already high energy demand state of growth and development. Therefore early identification of athletes and dancers at risk of LEA is key to prevention of development of the health and performance consequences outlined in the RED-S clinical model. Although there is a questionnaire available for screening for female athletes at risk of LEA, more research is emerging for effective and practical methods which are sport specific and include male athletes.

How?

Early medical input is important as RED-S is diagnosis of exclusion. In other words medical conditions per se need to be ruled out before arriving at a diagnosis of RED-S.  Prompt medical review is often dependent on other healthcare professionals, fellow athletes/dancers, coaches/teachers and parents/friends all being aware and therefore alert to RED-S. With this in mind, the Health4Performance website has areas for all of those potentially involved,  with tailored comments on What to look out for? What to do? Ultimately a team approach and collaboration between all these groups is important. Not only in identification of those at risk of LEA, but in an integrated support network for the athlete/dancer to return to optimal health and performance.

References

Heath4Performance BASEM Educational Resource

Video introduction to Health4Performance website

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) BJSM 2018

What is Dance Medicine? BJSM 2018

Identification and management of RED-S Podcast 2018

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists Keay, Francis, Hind. BJM Open Sport and Exercise Medicine 2018

How to Identify Male Cyclists at Risk of RED-S? 2018

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes IJSNM 2018

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes IJSNM 2017

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

What is Dance Medicine?

Traditionally dance medicine has been somewhat the poor relation of sports medicine. Why is this the case? There is no doubt that dancers, of whatever genre, require the physical and psychological attributes of athletes. However, dance involves an additional artistic component where ultimately performance on stage is judged not according to a score card as in aesthetic sports, rather on the ability of the dancers to forge an emotional connection with the audience.

As with athletes, injuries are always an important topic for dancers: how to recognise the aetiology of injuries and thus develop prevention strategies. Dance UK have published two reports on national enquiries into the health of dancers. Dance UK has now evolved into the organisation One Dance which includes the National Institute of Dance Medicine and Science (NIDMS). One Dance provides delivery of the Healthier Dancer Programme (HDP) whose talks regularly engage 1500+ dancers and dance professionals per year and which will be a part of the One Dance UK conference at the end of November, an overarching event for the entire dance sector. One Dance holds a list of healthcare professionals with experience and expertise in dance. One Dance is an especially an important resource for independent dancers who will not have access to the provision for those working in larger dance companies.

However, beyond injury management, there are important aspects of the health of dancers which need to be considered, highlighted in an information booklet “Your body, Your risk” from Dance UK. The female athlete triad is well established as a clinical spectrum comprising of disordered eating, menstrual dysfunction and impaired bone health. Indeed impaired bone mineral density many persist even after retirement in female dancers. The recent evolution of the female athlete triad into relative energy deficiency in sports (RED-S) provides an important clinical model. RED-S includes male athletes/dancers, involves multiple body systems and crucially, evidence of detrimental effects on athletic performance is being researched and described. In other words RED-S is not restricted to female dancers/athletes with bone stress injuries.

BalletDials
Integrated periodisation of training, nutrition and recovery support perforamnce

The fundamental cause of RED-S is low energy availability where nutritional intake is insufficient to cover energy requirements for training and resting metabolic rate. In this situation the body goes into energy saving mode, which includes shut down of many hypothalamic-pituitary axes and hence endocrine network dysfunction. As hormones are crucial to backing up adaptations to exercise training, dysfunction will therefore have an effect not just on health, but on athletic performance. In dance, neuromuscular skills and proprioception are key for performance. Hence, of concern is that these skills are adversely impacted in functional hypothalamic amenorrhoea, which together with impaired bone health from RED-S, greatly increases injury risk.

Low energy availability can arise in dance and sport where low body weight confers an aesthetic and/or performance advantage. There is no doubt that being light body weight facilitates pointe work in female dancers and ease of elevation in male dancers. Thus, low energy availability can occur intentionally in an effort to achieve and maintain low body weight. Low energy availability can also be unintentional as a result of increased expenditure from training, rehearsal and performance demands and the practicality of fuelling. This situation is of particular concern for young dancers in training, as this represents a high energy demand state, not just for full time training, additionally in terms of energy demands for growth and development, including attainment of peak bone mass.

Despite the significance of RED-S in terms of negative consequences on health and performance, as outlined by the IOC in the recent consensus update, further work is required in terms of raising awareness, identification and prevention. Fortunately these issues are being addressed with the development of an online educational resource on RED-S for athletes/dancers, their coaches/teachers/parents and healthcare professionals which is backed by British Association of Sport and Exercise Medicine (BASEM) and with input from One Dance and NIDMS. In terms of research to facilitate the proliferation of evidence base in dance medicine, One Dance lists calls for research, whilst NHS NIDMS clinics provide access to clinical dance medicine. The importance of the application of this growing field of dance medicine and science for the health and performance of dancers was recently outlined in an article “Raising the barre: how science is saving ballet dancers“.

On the international stage, the International Association for Dance Medicine & Science (IADMS) strives to promote an international network of communication between dance and medicine. To this end, IADMS will hold its 28th Annual Conference in Helsinki, Finland from October 25-28, 2018. In addition to extensive discussion of dance injuries, there will be presentations on “Sleep and Performance” and “Dance Endocrinology”.

So maybe Dance Medicine and Science is not so much the poor relation of Sports Medicine, rather showing the way in terms of integrating input between dancers, teachers and healthcare professionals to optimise the health of dancers and so enable dancers to perform their full potential.

References

Presentations

Fit to Dance? Report of National inquiry into dancers’ health.

Fit to Dance 2 Dance UK

One Dance

Your body your risk. Dance UK

Fit but fragile. National Osteoporosis Society

Bone mineral density in professional female dancers N. Keay, BJSM

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Dr N Keay BJSM 2018

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine and Science in Sports & Exercise 2017

Dancing through Adolescence Dr N Keay BJSM

Healthy Hormones Dr N Keay BASEM 2018

Dancers, Periods and Osteoporosis, Keay N, Dancers, Periods and Osteoporosis, Dancing Times, September 1995, 1187-1189

A study of Dancers, Periods and Osteoporosis, Keay N, Dance Gazette, Issue 3, 1996, 47

Raising the barre: how science is saving ballet dancers The Guardian 2018

International Association for Dance Medicine and Science Medicine & Science in Sports and Exercise

 

 

Synergistic Interactions of Steroid Hormones

Slide1

The action of the sun on skin is the most effective way of making vitamin D. However, even walking around outside naked for 5 hours every day during UK winter months is not sufficient to make adequate vitamin D. Therefore, much to the relief of the audience at the recent BASEM Spring conference, this was not a strategy recommended by Dr Roger Wolman.

Vitamin D is a fat soluble steroid hormone. The majority of which is synthesised in the skin when exposed to ultraviolet B in sunlight, with a small contribution from dietary sources: this vitamin D3 molecule is then hydroxylated twice in the liver and then kidney to produce the metabolically active form of vitamin D. This activated steroid hormone binds to vitamin D receptors in various tissues to exert its influence on gene expression in these cells. The mono hydroxylated form of vitamin D is measured in the serum, as this has a long half life.

Does it matter having low levels of circulating vitamin D during winter months? What are the solutions if moving to warmer climates during the winter is (unfortunately) not feasible? What are the other hormones interact with vitamin D?

What are the beneficial effects of vitamin D, particularly in the athletic population?

Bone

Rickets and osteomalacia are conditions where vitamin D deficiency results in bone deformities and radiographic appearances are characterised by Looser zones, which in some ways are similar in appearance to stress fractures.

In a large prospective study of physically active adolescent girls, stress fracture incidence was found to have an inverse relationship with serum vitamin D concentrations. In adult female Navy recruits monitored during an 8 week training programme, those on vitamin D supplementation had a 20% reduction in stress fracture. However, oestrogen status was a more powerful risk factor at 91% in those recruits reporting amenorrhoea. Vitamin D is, itself, is a steroid hormone with range of systemic effects. As will be discussed below, its interaction with the sex steroid oestrogen has an important effect on bone turnover.

Immunity

Although sanatoriums, for those suffering with tuberculosis, were based on providing patients with fresh air, any beneficial effect was probably more due to vitamin D levels being boosted by exposure to sunlight. Certainly there are studies demonstrating the inhibitory effect of vitamin D on on slow growing mycobacteria, responsible for TB. What about the influence of vitamin D on other types of infection? In a recent publication, evidence was presented that supplementation with vitamin D prevented acute respiratory tract infections. This effect was marked in those with pre-existing low levels of vitamin D. In a study of athletes a concentration of 95 nmol/L was noted at the cut off point associated with more or less than one episode of illness. In another randomised controlled study of athletes, those supplemented with 5,000IU per day of vitamin D3 during winter displayed higher levels of serum vitamin D and had increased secretion of salivary IgA, which could improve immunity to respiratory infections.

Muscle

There is evidence that supplementing vitamin D3 at 4,000IU per day has a positive effect on skeletal muscle recovery in terms of repair and remodelling following a bout of eccentric exercise. In the longer term, dancers supplemented with 2,000IU over 4 months reported not only reduction in soft tissue injury, but an increase in quadriceps isometric strength of 18% and an increase of 7% in vertical jump height.

Synergistic actions of steroid hormones

No hormone can be considered in isolation. This is true for the network interaction effects between the steroid hormones vitamin D and oestrogen. In a study of professional dancers, there was found to be significant differences in serum vitamin D concentrations in dancers from winter to summer and associated reciprocal relationship with parathyroid hormone (PTH). In situations of vitamin D deficiency this can invoke secondary hypoparathyroidism. Although low levels of vitamin D were observed in the dancers, this was not a level to produce this condition. However, there was an increase in soft tissue injury during the winter months that could, in part, be linked to low vitamin D levels impacting muscle strength.

The novel finding of this study was that female dancers on the combined oral contraceptive pill  (OCP) showed significant differences, relative to their eumenorrhoeic counterparts not on the OCP, in terms of higher levels of vitamin D and associated reductions of bone resorption markers and PTH. The potential mechanism could be the induction by the OCP of liver enzymes to increase binding proteins that alter the proportion of bound/bioactive vitamin D.

This interaction between steroid hormones oestrogen and vitamin D could be particularly significant in those in low oestrogen states such as postmenpoausal women and premenarchal girls. Menarche can be delayed in athletes, so is there a case for vitamin D supplementation in young non-menstruating athletes? What is the situation for men? Do testosterone and vitamin D have similar interactions and therefore implications for male athletes with RED-S, where testosterone can be low?

Vitamin D is not simply a vitamin. It is a steroid hormone with multi-system effects and interactions with other steroid hormones, such as sex steroids, which are of particular relevance to athletes.

References

BASEM Spring Conference 2018 “Health, Hormones and Human Performance”

BASEM Spring Conference 2018 Part 2 “Health, Hormones and Human Performance”

Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits JBMR 2009

Vitamin D, Calcium, and Dairy Intakes and Stress Fractures Among Female Adolescents Arch Pediatr Adolesc Med 2012

A Single Dose of Vitamin D Enhances Immunity to Mycobacteria American Journal of Respiratory and Critical Care Medicine 2007

Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data BMJ 2017

Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes Exerc Immunol Rev. 2013

The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes J Sports Sci. 2016

A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy American Journal of Physiology 2015

The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study Journal of Science and Medicine in Sport 2014

Vitamin D status in professional ballet dancers: Winter vs. summer J Science and Medicine in Sport 2013

Healthy Hormones

Is your training in tune with your hormones and nutrition to optimise your athletic performance?

Hormones are internal chemical messengers regulating all aspects of your health and athletic performance. Discussed at recent BASEM conference “Health Hormones and Human Performance”

webmd_rm_photo_of_porous_bones
Bone health can be at risk if hormone status not optimal

How? To enable your hormones to do the best job they can for your health and sport performance, you need to find a balance between what, how much and when you train, eat and sleep. In the diagram below, this represents staying on the healthy green plateau. Too much, or too little of any of these choices can lead to imbalances and tipping off the green plateau into the red, less healthy peripheries.

Slide1
Integrated periodisation of training, nutrition and recovery for optimal health and performance (Keay, BJSM 2017)

What? Imbalances between training load, nutrition and recovery can cause problems in the Endocrine system: the whole network of hormone interactions throughout your body. The bottom line is that if insufficient energy is provided through nutrition to cover both your training demands and the “housekeeping” activities within the body to keep you alive, then your body goes into energy saving mode. This situation is called relative energy deficiency in sports (RED-S) and has the potential to adversely impact one or more of the important systems in your body vital for optimal health and performance.

RED-S has evolved from the female athlete triad described in 1980s by Barbara Drinkwater in NEJM, where although female runners were consuming same dietary intake, those with higher training load were more likely to have menstrual dysfunction and low bone mineral density. Since this original description it has become obvious that the reproductive axis is just one of several hormone networks to be impacted by low energy availability and that RED-S also impacts the other half of the population: men.

red-s
Potential Multisystem effects of RED-S (IOC statement BJSM 2014)

Why? Suboptimal levels of energy availability to support health and performance can arise unintentionally, for example with increased training loads and/or times of growth and development in young athletes. Intentionally restrictive eating patterns can also be the cause of RED-S, particularly in sports/dance where low body weight confers a performance or aesthetic advantage. It is an indisputable fact that in order cycle up a mountain you need to overcome gravity and produce high watts/kg. Equally it is pretty impossible to do pointe work, let alone 32 fouttées en tournant en pointe unless you are a lightweight dancer. However if this at the expense of disrupting your hormones, then the advantage of being low body weight will be lost.

How to know? How to know if you, a teammate or a fellow athlete is at risk of RED-S? If you are a female athlete then your hormones are in balance if you are having regular periods (this does not include withdrawal bleeds as result of being on the oral contraceptive pill). Any woman of reproductive age from 16 years to the menopause should have regular periods (unless pregnant). Regular menstruation acts as the barometer of healthy hormones in women. If this is not the case, whether you are an athlete or not, you need to get this checked out medically to exclude underlying medical conditions. Having excluded these, then you need to review the integrated periodisation of training, nutrition and recovery. In male athletes there is not such an obvious sign that your hormones are at healthy levels. However recurrent injury/illness/fatigue can be warning signs. The diagram below shows all the potential adverse effects of RED-S on performance. Be aware that you do not have to have all, or indeed be aware of any of these effects if you develop RED-S.

Screen Shot 2017-05-20 at 19.16.28
Potential Performance effects of RED-S (IOC statement BJSM 2014)

So What? If you are an athlete/dancer, you may be thinking that none of this applies to you. You are feeling and performing fine. Maybe you have not yet experienced any of the detrimental effects of RED-S. However, you will never know how good an athlete you could be and whether you truly are performing to your full potential unless you put yourself in the best position in terms of your hormones to achieve this goal.

performance-potential
Suboptimal performance as result of RED-S (Keay, BJSM 2017)

Key Points

• Insufficient nutrition intake (quantity and quality), whether intentional or not, results in RED-S and multiple hormonal disruptions

• RED-S has detrimental health and athletic performance consequences in both the short and the long term

• Some consequences of RED-S are irreversible for example poor bone health, unless intervention is swift

Check points

• Are you suffering with frequent injuries/fatigue/illness over last 3 months or more?

• Female athletes: if 16 years or older have your periods not started? Have you missed more than 3 consecutive periods?

If yes to any of above, seek medical advice from someone with experience Sports Endocrinology. Now! The longer you leave the situation the harder it will be to rectify. Initially underlying Endocrine conditions per se have to be ruled out. RED-S is a functional dysfunction of the Endocrine system, so a diagnosis of exclusion. Having established RED-S as the diagnosis, monitoring Endocrine markers can be very helpful as these are examples of objective metrics in monitoring energy availability and therefore response to optimising integrated periodisation of nutrition, training and recovery.

Slide1
Integrated periodisation of key training factors support healthy hormones to drive improvements in performance

What to do? Don’t ignore! Although you may think you are fine, if your hormones are not working for you, then you will never reach your full potential as an athlete/dancer. For female athletes having regular periods means your hormones are in healthy ranges and this is normal. Not starting and/or missing periods is not healthy, for any woman.

For both male and female athletes, if you are experiencing recurrent injury, fatigue or illness, you need to get this checked out. There may be a simple explanation such as viral infection, low vitamin D or iron. However it may be that the underlying reason is due to hormone issues.

If you are an athlete, coach, teacher or parent and concerned that you/an athlete in your care has not got the balance right to optimise health and athletic performance, then a 3 way discussion will help and support the decision to seek medical advice as appropriate.

References

Lifestyle Choices for optimising health: exercise, nutrition, sleep Keay, BJSM 2017

Optimal health: including female athletes! Part 1 BJSM 2017

Optimal health: including male athletes! Part 2 BJSM 2017

Optimal Health: Especially Young Athletes! Part 3 BASEM 2017

Optimal Health: For All Athletes! Part 4 BASEM 2017

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sport Nutrition and exercise Metabolism 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Presentation at BASEM conference “Health, Hormones and Human Performance”

 

Health, Hormones and Human Performance Part 1

How hormones determine health and athletic performance

Endocrine and Metabolic aspects of Sports and Exercise Medicine are crucial determinants of health and human performance, from reluctant exerciser through to elite athlete and professional dancer. This is what I set out to demonstrate as the chair of the recent British Association of Sport and Medicine conference, with insightful presentations from my colleagues whom I had invited to share their research and practical applications of their work. The audience comprised of doctors with interest in sport and exercise medicine, representatives from the dance world, research scientists, nutritionists, physiotherapists, coaches and trainers. In short, all were members of multi-disciplinary teams supporting aspiring athletes. The importance of the conference was reflected in CDP awards from FSEM, BASES, Royal College of Physicians (RCP), REP-S and endorsement for international education from BJSM and National Institute of Dance Medicine and Science (NIDMS).

Exercise is a crucial lifestyle factor in determining health and disease. Yet we see an increasing polarisation in the amount of exercise taken across the general population. At one end of the spectrum, the increasing training loads of elite athletes and professional dancers push the levels of human performance to greater heights. On the other side of the spectrum, rising levels of inactivity, in large swathes of the population, increase the risk of poor health and developing disease states. Which fundamental biological processes and systems link these groups with apparently dichotomous levels of exercise? What determines the outcome of the underlying Endocrine and metabolic network interactions? How can an understanding of these factors help prevent sports injuries and lead to more effective rehabilitation? How can we employ Endocrine markers to predict and provide guidance towards beneficial outcomes for health and human performance?

If you weren’t able to come and participate in the discussion, these are some topics presented. My opening presentation (see video below) set the scene, outlining why having an optimally functioning Endocrine system is fundamental to health and performance. Conversely, functional disruption of Endocrine networks occurs with non integrated periodisation of the three key lifestyle factors of exercise/training, nutrition and recovery/sleep, which can lead to adverse effects on health and athletic performance.

In the case of an imbalance in training load and nutrition, this can manifest as the female athlete triad, which has now evolved into relative energy deficiency in sports (RED-S) in recognition of the fact that Endocrine feedback loops are disrupted across many hormonal axes, not just the reproductive axis. And, significantly, acknowledging the fact that males athletes can also be impacted by insufficient energy availability to meet both training and “housekeeping” energy requirements. Why and how RED-S can affect male athletes, in particular male competitive road cyclists, was discussed, highlighting the need for further research to investigate practical and effective strategies to optimise health and therefore ultimately performance in competition.

A degree of overlap and interplay exists between RED-S (imbalance in nutrition and training load), non functional over-reaching and over-training syndrome (imbalances in training load and recovery). Indeed research evidence was presented suggesting that RED-S increases the risk of developing over-training syndrome. In these situations of functional disruption of the Endocrine networks, underlying Endocrine conditions per se should be excluded. Case studies demonstrated this principle in the diagnosis of RED-S. This is particularly important in the investigation of amenorrhoea. All women of reproductive age, whether athletes or not, should have regular menstruation (apart from when pregnant!), as a barometer of healthy hormones. Indeed, since hormones are essential to drive positive adaptations to exercise, healthy hormones are key in attaining full athletic potential in any athlete/dancer, whether male or female. Evidence was presented from research studies for the role of validated Endocrine markers and clinical menstrual status in females as objective and quantifiable measures of energy availability and hence injury risk in both male and female athletes.

Slide1
Triumvirate of external factors impacting Endocrine system and hence performance

Alongside training metrics, if female athletes recorded menstrual pattern (as Gwen Jorgensen recently showed on her Training Peaks) and all athletes kept a biological passport of selected Endocrine markers; this could potentially identify at an early stage any imbalances in the triumvirate of training load, nutrition and recovery. Pre-empting development of RED-S or over-training syndrome, supports the maintenance of healthy hormones and hence optimal human performance.

Look out for presentations from speakers which will be uploaded on BASEM website shortly.

References

Video of presentation on the Endocrine and Metabolic Aspects of Sports and Exercise Medicine BASEM conference “Health, Hormones and Human Performance”

Study of hormones, body composition, bone mineral density and performance in competitive male road cyclists Investigation of effective and practical nutrition and off bike exercise interventions

Sports Endocrinology – what does it have to do with performance? Keay BJSM 2017

 

 

 

Male Athletes: the Bare Bones of Cyclists

Chris Boardman is an Olympic gold medal winner and world record breaking cyclist. However, he explains in his biography that he retired in his early thirties with weak bones and low testosterone. At the time he was treated with medication aimed at improving his bone strength, but this severely impacted his performance on the bike.

What was the cause of this superlative male athlete’s unhealthy condition that ultimately lead to his retirement? Is this still an issue for male cyclists today? Is it limited to elite professional riders?

Slide1
Periodisation of key training factors support the Endocrine system to optimise performance

In 2014 the IOC published a description of relative energy deficiency in sports (RED-S), where nutrition intake is insufficient to cover training demands and the basic “housekeeping” activities of the body. This induces an energy-saving mode that impacts health and therefore athletic performance. The female athlete triad had been previously described as the combination of disordered eating, menstrual disruption and impaired bone health. RED-S goes beyond the female athlete triad to include a broader range of  impacts on systems other than just the bones and female hormone production. Significantly RED-S includes male athletes. Today, Chris Boardman would be diagnosed with RED-S.

Has this new information improved the identification and support of male athletes at risk of RED-S? In a recent pilot study, 5 out of 10 competitive amateur riders (Category 2 and above) were in the lowest age-matched percentile of body fat and 9 out 10 where in the lowest 6% relative to the population of similar age. Significantly, 7 out of 10 riders had below-average for age bone mineral density (BMD) in the lumbar spine, with two males having bone densities that would be low for an 85 year old.

Why is poor bone health a particular risk for competitive male cyclists? Depending on the type of exercise, beneficial adaptations include mechanical strengthening of specific parts of the skeletal system. For example, assuming good nutrition, runners tend to have strong hips, whereas rowers have more robust spines in terms of BMD and bone microarchitecture. Conversely the non-weight-bearing nature of cycling and the generally lower level of upper-body musculature reduce the mechanical loading forces though the spine: low osteogenic (bone building) stimuli. Although similar to swimming, in the sense that body weight is supported in the water, the major difference between these two forms of exercise is that in cycling, particularly for climbing, low body mass confers a performance advantage. This brings in the additional factor for bone health of potential inadequacies in nutrition and therefore consequences on hormone production.

An optimal balance of training, nutrition and recovery drives beneficial adaptations to exercise throughout the body. The body’s Endocrine system releases hormones that stimulate positive changes, such as the process of improving the efficiency of delivering and utilising oxygen and nutrients to exercising tissues, including the skeletal system. Any imbalances in periodisation between the three inputs of training, nutrition and recovery will compromise health and athletic performance.

Cyclists are at particular risk of insufficient fuelling. This may be an intentional attempt to maintain low body weight, which can lead to healthy eating becoming an unhealthy orthorexic pattern, where vital food groups for endurance sport, such as carbohydrates are excluded. There is also a practical element to fuelling adequately during long rides and refuelling afterwards. Consistency of nutrition throughout the day has been highlighted in a recent study of male endurance athletes where although an average 24 hour intake may be sufficient, if there are any significant deficits during this time, then this is reflected in increased adverse impact on catabolic Endocrine makers. In another study of male athletes if refuelling with carbohydrate and protein after training did not occur promptly, this lead to an increase in bone resorption over formation markers.

Recovery is an essential part of a training schedule, because the adaptations to exercise occur during rest. Sleep, in particular, is a major stimulus for growth hormone release, which drives positive adaptive changes in terms of body composition and bone turnover. Conversely, insufficient recovery time due to a packed schedule of training and work, places extra stresses on the Endocrine system. Getting to bed half an hour earlier than usual every day quickly adds up to an extra night’s sleep.

Does it matter if some areas of the skeleton are weaker than others? Yes, because this increases your risk of fracture, not just if you come off your bike, but also with relatively low force impacts. In the case of runners and triathletes, bone stress injuries are more likely to occur as an early warning sign of impaired bone health due to RED-S. Since low impact forces are absent in cycling, it may take a crash to reveal the strength of a rider’s bones. Studying the list of injuries in elite cyclists there are many fractures, with longer recovery time for vertebral fractures. So potentially cyclists can develop more severe bone health issues than other athletes, before becoming aware of the situation.

If you are a male cyclist, what can you do to prevent issues of bone health and risk of developing RED-S and suboptimal performance on the bike? Watch this space! A study is planned to investigate practical and effective strategies to optimise health and performance on the bike. In meantime there will be more discussion on “Health, Hormones and Human Performance” at the BASEM conference 22 March. All welcome, including athletes and coaches, alongside healthcare professional working with athletes.

References

Mechanisms for optimal health…for all athletes! BJSM 2017

Optimal health: including female athletes! Part 1 Bones BJSM 2017

Lifestyle Choices for optimising health: exercise, nutrition, sleep BJSM 2017

Sports Endocrinology – what does it have to do with performance? BJSM 2017

Relative Energy Deficiency in Sports (RED-S) Practical considerations for endurance athletes

Within-day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Sleep for health and sports performance BJSM 2017

Conferences in Sport/Dance, Exercise Science and Medicine 2018

Conferences for the New Year:

BAsem2018_SpringConf_BJSM

If you are interested in any aspects of Sport/Dance, Exercise and Lifestyle Medicine here are some suggestions:

British Association of Sport and Exercise Medicine Spring Conference 22 March 2018 “Health, Hormones and Human Performance” Covering the Endocrine and Metabolic aspects of Sport, Dance, Exercise Science and Medicine. From the elite athlete to the reluctant exerciser. Aimed at all those members of the multidisciplinary team working with athletes/dancers, plus athletes/dancers and their coaches/teachers.

CPD points awarded from Faculty of Sports and Exercise Medicine FSEM

BASES British Association of Sport and Exercise Sciences CPD awarded

British Journal of Sports Medicine Quality International Education Approved

CPD points from Royal College of Physicians

CPD from REP-S

 

FSEM_CPD_AwardScreen Shot 2017-12-12 at 14.47.15fullsizeoutput_2b2fullsizeoutput_2b6

Why? The balance and timing of exercise, nutrition and recovery is key to optimising health and all aspects of human performance. Intricate network interactions between the Endocrine system and metabolic signalling pathways drive these positive adaptations. However, non-integration of these lifestyle factors can disrupt signalling feedback pathways and predispose to maladaptation and potentially disease states.

What? Discussion, led by experienced clinicians and researchers will cover:

· Key role of Sports Endocrinology in health and performance

· Effects of exercise modalities on body composition and bone health

· Machine learning in interpreting biochemical & metabolomic patterns

· Endocrine & metabolic markers in assessing health & training status

· Gut metabolism in supporting health and performance

· Exercise as crucial lifestyle factor in pre-existing metabolic dysfunction

Who? This conference is relevant to all members of multidisciplinary teams supporting both reluctant exercisers and elite athletes. Medics, researchers, physiologists, physiotherapists, nutritionists, psychologists, coaches, athletes. All welcome.

Health, Hormones and Human Performance will be a conference of interest to all those involved with aspiring and elite athletes, including dancers (National Institute of Dance Medicine and Science NIDMS) and those supporting reluctant exercisers through Lifestyle Medicine.

Latest news from BASEM. Interview with BASEM Today Issue 41 – Winter 2017

 

Wales Exercise Medicine Symposium by Cardiff Sports & Exercise Medicine Society 27/1/18. This includes Dr Peter Brukner, founder of the Olympic Sports Medicine Park in Melbourne, and an afternoon session discussing the female athlete through the lifespan. CPD points applied for from the Royal College of Physicians, the Faculty of Sports and Exercise Medicine, REPs and the Royal College Of General Practitioners.

fullsizeoutput_290

 

Women in Sport and Exercise Conference 2018  13-14 June Organised by The Women in Sport and Exercise Academic Network and attracting British Association of Sport and Exercise Sciences (BASES) CPD points.

fullsizeoutput_293

 

Lifestyle Choices

Slide1
Lifestyle Choices: Exercise, Nutrition, Sleep

Lifestyle factors of exercise, nutrition and sleep are vital for optimising health. In the illustration shown, ideally we should be in the green zone representing a balance between these lifestyle factors. Slipping into the peripheral red zone represents an imbalance: either too much or too little of any of these three elements. In particular exercise is of paramount importance being the most effective way of producing beneficial, multi-system effects mediated via the Endocrine system to optimise health and playing an important role in chronic disease prevention. However, it is not just a matter of what, but when: timing is crucial in integrating lifestyle factors with internal biological clocks. Beyond these guiding principles, personal preference and choice is emerging as being just as important as the lifestyle factor itself.

In a fascinating study, 58 participants were given either a prescribed exercise session, or a choice of exercise. Afterwards the participants were presented with a choice of foods, which they believed was simply as way of thank you for taking part in the exercise study. Post exercise, in those given no choice exercise, higher energy intake of food was consumed with larger proportion of “unhealthy” food compared to choice exercise group. The choice exercise group reported greater value and enjoyment of the exercise session. Thus autonomous choice of exercise not only provides positive reinforcement of exercising, but subsequent food choice is improved.

This concept of facilitating self determination, particularly when it comes to exercise was explored at the the recent annual British Association of Sport and Exercise conference. “Practicalities of intervention design, adherence and motivation” was presented by Dr Carly McKay from Bath University, who described how empowering people to make choices is far more likely to mean they will adhere to those lifestyle options that will optimise health.

What about the optimal timing of exercise which might improve motivation and performance? Well this depends on the context and what you are trying to achieve. In the case of training for competition and competition itself, optimal performance tends to be early evening, providing the most favourable hormonal milieu. Although in theory the morning diurnal release of cortisol might help with exercise, the downside is that this may interfere with blood glucose regulation. Furthermore, focusing on just one hormone in the Endocrine system, rather than the integrated function of the hypothalamic-pituitary axis could be misleading. Although due respect should be paid to internal biological clocks, to prevent circadian misalignment between internal pacemakers and external factors; equally becoming too obsessive about sticking to a rigid schedule would psychologically take away that essential element of choice. Practicality is a very important consideration and a degree of flexibility when planning the timing of exercise. For example, my choice of cardiovascualar exercise is swimming, which I fit in according to work commitments and when public lane swimming is available. Fortunately whilst at the BASEM conference in Bath, these practical conditions were met during the lunch break to take advantage of the 50m pool at Bath University. Pragmatic, not dogmatic when it comes to timing of exercise.

Timing of nutrition post exhaustive exercise is an important factor in supporting bone health. Immediate, rather than delayed refuelling with carbohydrate and protein is more advantageous in the balance of bone turnover markers; favouring formation over resorption. In the longer term, prolonged low energy availability as in the situation of relative energy deficiency in sport (RED-S) has a potentially irreversible adverse effect on bone health. In terms of the timing of meals, not eating too close to going to sleep, ideally 2 hours before melatonin release, is best for metabolic health.

Backing up the lifestyle choices of exercise and nutrition is sleep. Timing, duration and quality of sleep is essential for many aspects of health such as hormonal release of growth hormone, functional immunity and cognitive function. Certainly it is well recognised that shift workers, with circadian misalignment: disturbed sleep patterns relative to intrinsic biological clocks, are more at risk of developing cardio-metabolic disease.

In summary, a prescriptive approach to lifestyle factors could be counter productive. Discussing options and encouraging individuals to make their own informed and personal choices is far more likely to enable that person to take responsibility for their health and adhere to changes in lifestyle that are beneficial for their health. Having worked in hospital based NHS diabetic clinics for many years, I appreciate that supporting reluctant exercisers is not always an easy task. Equally it can be difficult to distinguish between the effects of ageing and loss of fitness. However, this does not mean that this supportive and inclusive approach should be abandoned. Rather, encouraging people to participate in decision making that they feel leads to options that are realistic and beneficial, is the approach most likely to work, especially in the long term.

“If we could give every individual the right amount of nourishment and exercise, not too little and not too much, we would have found the safest way to health.”
— Hippocrates

For more discussion on Health Hormones and Human Performance come to British Association of Sport and Exercise Medicine Spring Conference 

BAsem2018_SpringConf_BJSM

References

Presentations

One road to Rome: Exercise Dr N. Keay, British Journal of Sports Medicine 2017

Endocrine system: balance and interplay in response to exercise training Dr N. Keay 2017

Temporal considerations in Endocrine/Metabolic interactions Part 1 Dr N. Keay, British Journal of Sports Medicine 2017

Temporal considerations in Endocrine/Metabolic interactions Part 2 Dr N. Keay, British Journal of Sports Medicine 2017

Internal Biological Clocks and Sport Performance Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Providing Choice in Exercise Influences Food Intake at the Subsequent Meal Medicine & Science in Sports & Exercise October 2017

BASEM/FSEM Annual Conference 2017, Assembly Rooms, Bath

Addiction to Exercise – what distinguishes a healthy level of commitment from exercise addiction? Dr N. Keay, British Journal of Sports Medicine 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine October 2017

Optimal Health: For All Athletes! Part 4 – Mechanisms Dr N. Keay, British Association of Sport and Exercise Medicine 2017

Sleep for health and sports performance Dr N. Keay, British Journal of Sports Medicine 2017

Focus on physical activity can help avoid unnecessary social care British Medical Journal October 2017

Athletic Fatigue: Part 2

A degree of athletic fatigue following a training session, as described in part 1, is required to set in motion mechanisms to drive beneficial adaptations to exercise. At what point does this process of functional over-reaching tip into non-functional over-reaching denoted by failure to improve sports performance? Or further still along the spectrum and time scale, the chronic situation of overtraining and decrease in performance? Is this a matter of time scale, or degree, or both?

Slide1
Integrated Periodisation of Training Load, Nutrition and Recovery keeps an individual on the green plateau, avoiding descent into the red zone, due to an excess or deficiency

Determining the tipping point between these fatigue situations is important for health and performance. A first step is always to exclude underlying organic disease states, be these of Endocrine, systemic inflammatory or infective aetiologies. Thereafter the crucial step is to assess whether the periodisation of training, nutrition and recovery are integrated over a training block and in the longer term over a training season.

What about the application of Endocrine markers to monitor training load? Although the recent studies described below are more applicable to research scenarios, they give some interesting insights into the interactive networks effects of the Endocrine system and the multifactorial nature of fatigue amongst individual athletes.

In the short term, during a 2 day rowing competition, increases in wakening salivary cortisol were noted followed by return towards baseline in subsequent 2 day recovery. Despite individual variability with salivary cortisol measurement, this does at least offer a noninvasive way to adjust training loads around competition time for elite athletes.

Over an 11 day stimulated training camp and recovery during the sport specific preparatory phase of the training season, blood metabolic and Endocrine markers were measured. In the case of an endurance based training camp in cyclists, a significant increase in urea (due to protein breakdown associated with high energy demand training) and decrease in insulin-like growth factor 1 (IGF1) from baseline were noted. Whereas for the strength-based athletes for ball sports, an increase in creatine kinase (CK) was seen, as a result of muscle damage. This study demonstrates how different markers of fatigue are specific to sport discipline and mode of training. Large inter-individual variability existed between the degree of change in markers and degree of fatigue.

In the longer term, for the case of overtraining syndrome potential Endocrine markers have been reviewed. Whilst basal levels of most measured hormones remained stable, a blunted submaximal exercise response of growth hormone (GH), prolactin and ACTH could be indicative of developing overtraining syndrome. Whilst this review is interesting, dynamic testing is not a practical approach and these findings are not specific to over training. Rather this blunted dynamic exercise response would indicate relative suppression of the neuroendocrine hypothalamic-pituitary axis which could potentially involve other stressors such as inadequate sleep or poor nutrition. Although basal levels may lie “within the normal range”, if both pituitary derived stimulating hormone and end endocrine gland hormone concentrations fall in the lower end of the normal ranges (eg low end of range TSH and T4) this is consistent with mild hypothalamic suppression observed over the range of training and fatigue conditions (functional/non-functional and overtraining) and/or Relative Energy Deficiency in Sports (RED-S).

Although the studies above are of research interest, non invasive monitoring, specific to an athlete is more practical for monitoring the effects of training. Several useful easily measurable metrics can give clues: resting heart rate, heart rate variability, power output. Tools on Strava and Training Peaks provide practical insights in monitoring training effectiveness via these metrics. A range of mobile apps makes it ever easier to augment a personal training log to include these training metrics, along with feel, sleep and nutrition. Such a log provides feedback on health and fitness for the individual athlete, in order to personalise training plans. Certainly adding the results from any standard basal blood tests will also help add to the picture, along the lines of building a longitudinal personal biological passport. After all, “normal ranges” are based on the general population, of which top level athletes may represent a subgroup. The more personalised the metics recorded over a long time scale, the more sensitive and useful the process to guide improvement in sport performance.

Context is key when considering athletic fatigue: temporal considerations and individual variation. Certainly the interactive network effects of the Endocrine system are important in determining the degree of adaptation to exercise and therefore sports performance. However the Endocrine system acts in conjunction with many other systems (metabolic, immune and inflammatory), in determining the effectiveness of training in improving sports performance. So it is not surprising that one metric or marker in isolation is not predictive of fatigue status in individual athletes.

For more discussion on Health, Hormones and Human Performance come to the British Association of Sport and Exercise Medicine annual conference

Presentations

References

Athletic Fatigue: Part 1

Endocrine system: balance and interplay in response to exercise training

Temporal considerations in Endocrine/Metabolic interactions Part 1

Fatigue, sport performance and hormones..more on the endocrine system Dr N Keay, British Journal of Sports Medicine 2017

Sport Performance and RED-S, insights from recent Annual Sport and Exercise Medicine and Innovations in Sport and Exercise Nutrition Conferences Dr N Keay, British Journal of Sports Medicine 2017

Capturing effort and recovery: reactive and recuperative cortisol responses to competition in well-trained rowers British Journal of Sports Medicine

Blood-Borne Markers of Fatigue in Competitive Athletes – Results from Simulated Training Camps Plos One

Hormonal aspects of overtraining syndrome: a systematic review BMC Sports Science, Medicine and Rehabilitation 2017

Clusters of Athletes – A follow on from RED-S blog series to put forward impact of RED-S on athlete underperformance Dr N Keay, British Association of Sport and Exercise Medicine 2017

Strava Fitness and Freshness Science4Performance 2017

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N Keay, British Journal of Sports Medicine 2017

Sports Endocrinology – what does it have to do with performance? Dr N Keay, British Journal of Sports Medicine 2017

Athletic Fatigue: Part 1

Interpreting athletic fatigue is not easy. Consideration has to be given to context and time scale. What are the markers and metrics that can help identify where an athlete lies in the optimal balance between training, recovery and nutrition which support beneficial adaptations to exercise whilst avoiding the pitfalls of fatigue and maladaptation? This blog will discuss the mechanisms of athletic fatigue in the short term.

Screen Shot 2017-08-30 at 09.17.58
Proposed causes of fatigue dependent on duration and intensity of training session

In the short term, during an endurance training session or race, the temporal sequence of athletic fatigue depends on duration and intensity. It is proposed that below lactate threshold (LT1), a central mechanism governs: increasing central motor drive is required to maintain skeletal muscular power output until neuromuscular fatigue cannot be overcome. From lactate threshold (LT1) to lactate turn point (LT2), a combination of central and peripheral factors (such as glycogen depletion) are thought to underpin fatigue. During high intensity efforts, above LT2 (which correspond to efforts at critical power), accumulation of peripheral metabolites and inability to restore homeostasis predominate in causing fatigue and ultimately inability to continue, leading to “task failure”. Of course there is a continuum and interaction of the mechanisms determining this power-duration relationship. As glycogen stores deplete this impacts muscle contractility by impairing release of calcium from the sarcoplasmic reticulum in skeletal muscle. Accumulation of metabolites could stimulate inhibitory afferent feedback to central motor drive for muscle contraction, combined with decrease in blood glucose impacting central nervous system (CNS) function.

Even if you are a keen athlete, it may not be possible to perform a lactate tolerance or VO2 max test under lab conditions. However a range of metrics, such as heart rate and power output, can be readily collected using personalised monitoring devices and then analysed. These metrics are related to physiological markers. For example heart rate and power output are surrogate markers of plasma lactate concentration and thus can be used to determine training zones.

A training session needs to provoke a degree of training stress, reflected by some short term fatigue, to set in motion adaptations to exercise. At a cellular level this includes oxidative stress and exerkines released by exercising tissues, backed up by Endocrine responses that continue to take effect after completing training during recovery and sleep. Repeated bouts of exercise training, followed by adequate recovery, result in a stepwise increase in fitness. Adequate periodised nutrition to match variations in demand from training also need to be factored in to prevent the Endocrine system dysfunction seen in Relative Energy Deficiency in Sports (RED-S), which impairs Endocrine response to training and sports performance. Integrated periodisation of training/recovery/nutrition is essential to support beneficial multi-system adaptations to exercise on a day to day time scale, over successive training blocks and encompassing the whole training and competition season. Psychological aspects cannot be underestimated. At what point does motivation become obsession?

In Part 2 the causes of athletic fatigue over a longer time scale will be discussed, from training blocks to encompassing whole season.

For more discussion on Health, Hormones and Human Performance come to the British Association of Sport and Exercise Medicine annual conference

Presentations

References

Endocrine system: balance and interplay in response to exercise training

Power–duration relationship: Physiology, fatigue, and the limits of human performance European Journal of Sport Science 2016

Strava Ride Statistics Science4Performance 2017

Sleep for health and sports performance Dr N Keay, British Journal of Sports Medicine 2017

Relative Energy Deficiency in Sports (RED-S) Practical Considerations for Endurance Athletes

Sports Endocrinology – what does it have to do with performance? Dr N Keay, British Journal of Sports Medicine 2017

Optimal Health: For All Athletes! Part 4 – Mechanisms Dr N Keay, British Association of Sport and Exercise Medicine 2017

Addiction to Exercise – what distinguishes a healthy level of commitment from exercise addiction? Dr N Keay, British Journal of Sports Medicine 2017