Sports Endocrinology

SportsEndocrinologyWordCloud

The Endocrine system comprises various glands distributed throughout the body that secrete hormones to circulate in the blood stream. These chemical messengers, have effects on a vast range of tissue types, organs and therefore regulate metabolic and physiological processes occurring in systems throughout the body.

The various hormones produced by the Endocrine system do not work in isolation; they have interactive network effects. The magnitude of influence of a hormone is largely determined by its circulating concentration. This in turn is regulated by feedback loops. For example, too much circulating hormone will have negative feedback effect causing the control-releasing system to down regulate, which will in turn bring the level of the circulating hormone back into range. Ovulation in the menstrual cycle is a rare example of a process induced by positive hormonal feedback.

In the control system of hormone release, there are interactions with other inputs in addition to the circulating concentration of the hormone. The hypothalamus (gland in the brain) is a key gateway in the neuro-endocrine system, coordinating inputs from many sources to regulate output of the pituitary gland, which produces the major stimulating hormones to act on the Endocrine glands throughout the body.

growthhormone

The Endocrine system displays complex dynamics. There are temporal variations in secretion of hormones both in the long term during an individual’s lifetime and on shorter timescales, as seen in the diurnal variation of some hormones such as cortisol, displaying a circadian rhythm of secretion. The most fascinating and complex control system is found in the hypothalamic-pituitary-ovarian axis. Variation in both frequency and amplitude of gonadotrophin releasing factor (GnRH) secretion from the hypothalamus dictates initiation of menarche and the subsequent distinct pattern of cyclical patterns of the sex steroids, oestrogen and progesterone.

So what have the Endocrine system and hormone production got to do with athletes and sport performance?

  1. Exercise training stimulates release of certain hormones that support favourable adaptive changes. For example, exercise is a major stimulus of growth hormone, whose action positively affects body composition in terms of lean mass, bone density and reduction of visceral fat.
  2. Disruption of hormones secreted from the Endocrine system can impair sport performance and have potential long term adverse health risks for athletes. This picture is seen in the female athlete triad (disordered eating, amenorrhoea and low density) and relative energy deficiency in sport (RED-S) with multi-system effects. In this situation there is a mismatch between dietary energy intake (including diet quality) and energy expenditure through training. The net result is a shift to an energy saving mode in the Endocrine system, which impedes both improvement in sport performance and health. RED-S should certainly be considered among the potential causes of sport underperformance, suboptimal health and recurrent injury,  with appropriate medical support being provided.
  3. Caution! Athletic hypothalamic amenorrhoea, as seen in female athletes (in female athlete triad and RED-S) is a diagnosis of exclusion. Other causes of secondary amenorrhoea (cessation of periods >6 months) should be excluded such as pregnancy, polycystic ovary syndrome (PCOS), prolactinoma, ovarian failure and primary thyroid dysfunction.
  4. Unfortunately the beneficial effects of some hormones on sport performance are misused in the case of doping with growth hormone, erythropoeitin (EPO) and anabolic steroids. Excess administered exogenous hormones not only disrupt the normal control feedback loops, but have very serious health risks, which are seen in disease states of excess endogenous hormone secretion.

So the Endocrine system and the circulating hormones are key players not only in supporting health, but in determining sport performance in athletes.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Sport Performance and RED-S, insights from recent Annual Sport and Exercise Medicine and Innovations in Sport and Exercise Nutrition Conferences Dr N. Keay, British Journal of Sports Medicine 17/3/17

Teaching module on RED-S for British Association of Sport and Exercise Medicine as CPD for Sports Physicians

Optimal Health: Including Female Athletes! Part 1 – Bones Dr N. Keay, British Journal of Sport Medicine 26/3/17

Optimal Health: Including Male Athletes! Part 2 – REDs Dr N. Keay, British Journal of Sport Medicine 4/4/17

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association of Sport and Exercise Medicine 13/4/17

Optimal health: for all athletes! Part 4 Mechanisms Dr N. Keay, British Association of Sport and Exercise Medicine 13/4/17

Enhancing sport performance: part 1 Dr N. Keay, British Association of Sport and Exercise Medicine

Enhancing sports performance: part 3

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N. Keay, British Journal of Sport Medicine

Sleep for health and sports performance Dr N. Keay, British Journal of Sport Medicine

Balance of recovery and adaptation for sports performance Dr N. Keay, British Association of Sport and Exercise Medicine

Clusters of athletes Dr N. Keay, British Association of Sport and Exercise Medicine

Inflammation: why and how much? Dr N. Keay, British Association of Sport and Exercise Medicine

Fatigue, Sport Performance and Hormones…Dr N. Keay, British Journal of Sport Medicine

Keay N, Logobardi S, Ehrnborg C, Cittadini A, Rosen T, Healy ML, Dall R, Bassett E, Pentecost C, Powrie J, Boroujerdi M, Jorgensen JOL, Sacca L. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sport: a double blind, placebo controlled study. Journal of Endocrinology and Metabolism. 85 (4) 1505-1512. 2000.

Wallace J, Cuneo R, Keay N, Sonksen P. Responses of markers of bone and collagen turover to exercise, growth hormone (GH) administration and GH withdrawal in trained adult males. Journal of Endocrinology and Metabolism 2000. 85 (1): 124-33.

Keay N. The effects of growth hormone misuse/abuse. Use and abuse of hormonal agents: Sport 1999. Vol 7, no 3, 11-12.

Wallace J, Cuneo R, Baxter R, Orskov H, Keay N, Sonksen P. Responses of the growth hormone (GH) and insulin-like factor axis to exercise,GH administration and GH withdrawal in trained adult males: a potential test for GH abuse in sport. Journal of Endocrinology and Metabolism 1999. 84 (10): 3591-601.

Keay N, Logobardi S, Ehrnborg C, Cittadini A, Rosen T, Healy ML, Dall R, Bassett E, Pentecost C, Powrie J, Boroujerdi M, Jorgensen JOL, Sacca L. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential usefulness as in the detection of GH abuse in sport: a double blind, placebo controlled study. Endocrine Society Conference 1999.

Wallace J, Cuneo R, Keay N. Bone markers and growth hormone abuse in athletes. Growth hormone and IGF Research, vol 8: 4: 348.

Keay N, Fogelman I, Blake G. Effects of dance training on development,endocrine status and bone mineral density in young girls.Current Research in Osteoporosis and bone mineral measurement 103, June 1998.

Keay N, Effects of dance training on development, endocrine status and bone mineral density in young girls, Journal of Endocrinology, November 1997, vol 155, OC15.

Keay N, Fogelman I, Blake G. Bone mineral density in professional female dancers. British Journal of Sports Medicine, vol 31 no2, 143-7, June 1997.

Keay N. Bone mineral density in professional female dancers. IOC World Congress on Sports Sciences. October 1997.

Keay N, Bone Mineral Density in Professional Female Dancers, Journal of Endocrinology, November 1996, volume 151, supplement p5.

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports

In my previous blogs I have described the adverse effects of Relative Energy Deficiency in sports (RED-S) in both female and male athletes both in terms of current health and sport performance and potential long term health problems. What about young aspiring athletes? There is concern that early sport specialisation, imbalances in training not covering the full range of the components of fitness, together with reduced sleep, all combine to increase injury risk. Young athletes are particularly vulnerable to developing RED-S during a period of growth and development accompanied by a high training load.

Sufficient energy availability and diet quality, including micronutrients, is especially important in young athletes. To investigate further I undertook a three year longitudinal study involving 87 pre- and post-pubertal girls, spread across control pupils at day school together with students in vocational training in both musical theatre and ballet streams. There was a gradation in hours of physical exercise training per week ranging from controls with least, followed by musical theatre, through to ballet stream with the most.

In all girls dietary, training and menstrual history were recorded and collected every six months. At the same visit anthropometric measurements were performed by an experienced Paediatric nurse and bloods were taken for Endocrine markers of bone metabolism and leptin. Annual DEXA scans measured body composition, total body bone mineral density (BMD) and BMD at lumbar spine (including volumetric) and BMD at femoral neck.

The key findings included a correlation between hours of training and the age of menarche and subsequent frequency of periods. In turn, any menstrual dysfunction was associated with low age-matched (Z score) BMD at the lumbar spine. There were significant differences between groups for age-matched (Z score) of BMD at lumbar spine, with musical theatre students having the highest and ballet students the lowest. There were no significant differences in dietary intake between the three groups of students, yet the energy expenditure from training would be very different. In other words, if there is balance between energy availability and energy expenditure from training, resulting in concurrent normal menstrual function, then such a level of exercise has a beneficial effect on BMD accrual in young athletes, as demonstrated in musical theatre students. Conversely if there is a mismatch between energy intake and output due to high training volume, this leads to menstrual dysfunction, which in turn adversely impacts BMD accrual, as shown in the ballet students.

I was fortunate to have two sets of identical twins in my study. One girl in each twin pair in the ballet stream at vocational school had a twin at a non-dance school. So in each twin set, there would be identical genetic programming for age of menarche and accumulation of peak bone mass (PBM). However the environmental influence of training had the dominant effect, as shown by a much later age of menarche and decreased final BMD at the lumbar spine in the ballet dancing girl in each identical twin pair.

After stratification for months either side of menarche, the peak rate of change for BMD at the lumbar spine was found to be just before menarche, declining rapidly to no change by 60 months post menarche. These findings suggest that optimal PBM and hence optimal adult BMD would not be attained if menarche is delayed due to environmental factors such as low energy density diet. If young athletes such as these go on to enter professional companies, or become professional athletes then optimal, age-matched BMD may never be attained as continued low energy density diet and menstrual dysfunction associated with RED-S may persist. Associated low levels of vital hormones such as insulin like growth factor 1 (IGF-1) and sex steroids impair bone microarchitecture and mineralisation. Thus increasing risk of injury such as stress fracture and other long term health problems. The crucial importance of attaining peak potential during childhood and puberty was described at a recent conference at the Royal Society of Medicine based on life course studies. For example, delay in puberty results in 20% reduction of bone mass.

slide10

It is concerning that RED-S continues to occur in young athletes, with potential current and long term adverse consequences for health. Young people should certainly be encouraged to exercise but with guidance to avoid any potential pitfalls where at all possible. In my next blog I will delve into the Endocrine mechanisms involved in RED-S: the aetiology and the outcomes.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Optimal Health: including female athletes! Part 1 Bones Dr N. Keay, British Journal of Sport Medicine

Optimal health: including male athletes! Part 2 Relative Energy Deficiency in sports Dr N. Keay, British Journal of Sport Medicine 4/4/17

Keay N. The modifiable factors affecting bone mineral accumulation in girls: the paradoxical effect of exercise on bone. Nutrition Bulletin 2000, vol 25, no 3. 219-222.

Keay N The effects of exercise training on bone mineral accumulation in adolescent girls. Journal of Bone and Mineral Research. Vol 15, suppl 1 2000.

Keay N, Frost M, Blake G, Patel R, Fogelman I. Study of the factors influencing the accumulation of bone mineral density in girls. Osteoporosis International. 2000 vol 11, suppl 1. S31.

New S, Samuel A, Lowe S, Keay N. Nutrient intake and bone health in ballet dancers and healthy age matched controls: preliminary findings from a longitudinal study on peak bone mass development in adolescent females, Proceedings of the Nutrition Society, 1998

Keay N, Dancing through adolescence. Editorial, British Journal of Sports Medicine, vol 32 no 3 196-7, September 1998.

Bone health and fractures in children. National Osteoporosis Society

Lifetime influences on musculoskeletal ageing and body composition. Lecture by Professor Diana Kuh, Director of MRC Unit for Lifelong Healthy Ageing, at Royal Society of Medicine, conference on Sports Injuries and sports orthopaedics. 17/1/17

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Health and fitness in young people

Optimal health: including female athletes! Part 1 Bones

webmd_rm_photo_of_porous_bonesIt is hard to dispute that women are underrepresented in medical research and certainly there are not many studies that include female athletes. Does this matter? After all whatever your gender the same physiological and metabolic processes occur. However the Endocrine system is where there are distinct differences in sex steroid production, which in turn have different responses in multiple target cells.

Although studies on changes in exercise performance in response to various dietary interventions and training regimes are often very interesting and well described, I am left feeling slightly uneasy when the subjects are all males. The cause for my concern is that the female hypothalamus-pituitary-ovarian axis is a particularly sensitive system with complex feedback loops and interacting networks.

Menstrual disturbance is not unusual amongst women in sport/dance where low body weight is an advantage. When a ballet dancer performs pointe work, putting full body weight through the big toe is hard enough, without extra load! Some women might consider it a convenience to be spared the hassle of menstruation. At age 24, I was perfectly fine never having had a period (primary amenorrhoea), or so I thought, being no more tired than other hospital medical colleagues working full time, studying for postgraduate medical exams and also involved in exercise training.

While working as a SHO at Northwick Park Hospital, I volunteered to be included in a study at the British Olympic Medical Association. The study was of female lightweight rowers and ballet dancers to look at VO2 max, percentage body fat and bone mineral density (BMD). I had been doing Ballet intensively (and obsessively) from a very young age, together with restricted fat and carbohydrate intake. Sounds a familiar scenario? Although I looked perfectly healthy (and I did not fit into a clinical condition requiring treatment), worked and danced well, my bone density was worryingly low. So if you are a female doing weight-bearing exercise or resistance training which loads the skeleton, these activities promoting osteogenesis will be negated if you are not ovulating and producing adequate oestrogens. The female athlete triad composed of disordered eating, amenorrhoea and low BMD was originally described by Drinkwater in 1984. However, once pathological states causing amenorrhoea have been excluded, in medical terms the female athlete triad did not necessarily constitute a disease state requiring intervention, rather subset of the “normal population”.

How significant is having low BMD compared to the age-matched population during your 20s? Could this even be viewed as a reversible adaptation to training, reflected in site specific differences in BMD according to sport? After all, when female athletes retire with decreased training “stress” and more “relaxed” diet, menses often resume and therefore does BMD also improve? This was the question I sought to answer in my study on 57 premenopausal retired professional dancers. Even with return of menses, if these athletes had experienced previous amenorrhoea of more than 6 month duration, then bone loss was irrecoverable. Current low BMD was also correlated to lowest body weight (independent of amenorrhoea) during dance career and later age of menarche. There did not appear to be any protective effect of being on the oral contraceptive pill. Constructing a model of BMD using multiple regression 33.6% of total variation in z (age matched) score for BMD at lumbar spine was accounted for by duration of amenorrhea, age at menarche and lowest body weight during dance career. So “athletic” hypothalamic amenorrhea rather than being a reversible, adaptive response has long term, irreversible effects on BMD.

Apart from bone metabolism, what other systems are impacted by mismatch of energy intake and expenditure in overtly healthy athletes? Are the endocrine and metabolic systems in male athletes also affected by subtle imbalances in training energy expenditure and dietary intake? What about young athletes? In my next blog I will explore the rationale behind the original female athlete triad now being described as part of Relative Energy Deficiency in sports (RED-S). The implications for current health and sports performance, as well as long term health in both adult men and women and young athletes.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Keay N, Fogelman I, Blake G. Bone mineral density in professional female dancers. British Journal of Sports Medicine, vol 31 no2, 143-7, June 1997.

Keay N. Bone mineral density in professional female dancers. IOC World Congress on Sports Sciences. October 1997.

Keay N, Bone Mineral Density in Professional Female Dancers, Journal of Endocrinology, November 1996, volume 151, supplement p5.

Keay N, Bone Mineral Density in Female Dancers, abstract Clinical Science, Volume 91, no1, July 1996, 20p.

Keay N, Dancers, Periods and Osteoporosis, Dancing Times, September 1995, 1187-1189

Keay N, A study of Dancers, Periods and Osteoporosis, Dance Gazette, Issue 3, 1996, 47

Fit to Dance? Report of National inquiry into dancers’ health

Fit but fragile. National Osteoporosis Society

Your body your risk. Dance UK

From population based norms to personalised medicine: Health, Fitness, Sports Performance British Journal of Sport Medicine 22/2/17

Optimal Health: Including Male Athletes! Part 2 – REDs Dr N. Keay, British Association Sport and Exercise Medicine

Optimal health: especially young athletes! Part 3 Consequences of Relative Energy Deficiency in sports Dr N. Keay, British Association Sport and Exercise Medicine

Optimal health: for all athletes! Part 4 Mechanisms Dr N. Keay, British Association Sport and Exercise Medicine