Low Energy Availability in Climbers

Listen into a great discussion I had with Dr Nigel Callender an ex competitive climber and climbing coach about the “elephant in the room” in competitive climbing.

Discussion of Low Energy Availability and RED-S

As a gravitational sport, being a light-weight climber confers a performance advantage. However, being alert to low energy availability and the clinical consequences of RED-S on health and performance is important for climbers. With climbing being included the next Olympics, then hopefully this will raise awareness of being alert to athletes at risk of low energy availability and RED-S.

IMG_0175

Insights from Dr Nigel Callender, sports scientist turned medical doctor (anaesthetics/critical care trainee) an active researcher, largely into the exercise physiology aspects of climbing and ex-competitor, having represented Ireland at international level and been British bouldering champion before shoulder injuries ended that. Sport climbing is included in the 2020 Tokyo summer games in its three competitive disciplines; bouldering, lead climbing and speed climbing. Each sub-discipline has a slightly different athlete profile and physiological demands, but all are obviously under the heading of gravity dependent sports. Current participation figures put yearly indoor climbing participation at around the one million mark in the UK and it is said to be one of the fastest growing sports worldwide. The sport is being recognised as a great way to improve overall health and fitness, with recent papers citing it as a useful rehab activity for many physical and mental health conditions and also as a health promotion tool.

Although climbing has been a formal competitive sport in some sense since the late 80’s, it still lacks much in the way of formal training and medical guidelines. Being a gravity dependent sport, strength to weight ratio is important, however Dr Callender and his colleagues are seeing a high incidence of restrictive eating patterns at all levels of the sport and a lack of awareness around the performance impairments and health risks associated with a significant or prolonged negative energy balance in some athletes.

The Outdoor Athlete Podcast is a bit of a winter project that came about to establish a gold-standard resource, driven by credible experts in their relevant fields, as an attempt to provide high-quality and evidence-based information amongst the confusing advice that is now the internet. It’s free and always will be and it was inspired by the BJSM Podcasts though broadly aiming at ‘Outdoor Athletes’ e.g. Climbers, Fell/Trail runners, Mountain bikers and anyone happy to listen.

For more information on climbing in the UK, including competition climbing see http://www.thebmc.co.uk

Raising Awareness of RED-S in Male and Female Athletes and Dancers

Health4Performance is a recently developed BASEM open access educational resource

This is a world premier: a resource developed for and by athletes/dancers, coaches/teachers, parents/friends and healthcare professionals to raise awareness of Relative Energy Deficiency in Sport (RED-S)

What?

Optimal health is required to attain full athletic potential. Low energy availability (LEA) can compromise health and therefore impair athletic performance as described in the RED-S clinical model.

Dietary energy intake needs to be sufficient to cover the energy demands of both exercise training and fundamental physiological function required to maintain health. Once the energy demands for training have been covered, the energy left for baseline “housekeeping” physiological function is referred to as energy availability (EA). EA is expressed relative to fat free mass (FFM) in KCal/Kg FFM.  The exact value of EA to maintain health will vary between genders and individuals, roughly equivalent to resting metabolic rate of the individual athlete/dancer. LEA for an athlete or dancer will result in the body going into “energy saving mode” which has knock on effects for many interrelated body systems, including readjustment to lower the resting metabolic rate in the longer term. So although loss in body weight may be an initial sign, body weight can be steady in chronic LEA due to physiological energy conservation adaptations. Homeostasis through internal biological feedback loops in action.

The most obvious clinical sign of this state of LEA in women is cessation of menstruation (amenorrhea). LEA as a cause of amenorrhoea is an example of functional hypothalamic amenorrhoea (FHA). In other words, amenorrhoea arising as a result of an imbalance in training load and nutrition, rather than an underlying medical condition per se, which should be excluded before arriving at a diagnosis of FHA. All women of reproductive age, however much exercise is being undertaken, should have regular menstrual cycles, which is indicative of healthy hormones. This explains why LEA was first described as the underlying aetiology of the female athlete triad, as women in LEA display an obvious clinical sign of menstrual disruption. The female athlete triad is a clinical spectrum describing varying degrees of menstrual dysfunction, disordered nutrition and bone mineral density. However it became apparent that the clinical outcomes of LEA are not limited to females, nor female reproductive function and bone health in female exercisers. Hence the evolution of the clinical model of RED-S to describe the consequences of LEA on a broader range of body systems and including male athletes.

A situation of LEA in athletes and dancers can arise unintentionally or intentionally. In the diagram below the central column shows that an athlete where energy intake is sufficient to cover the demands from training and to cover basic physiological function. However in the column on the left, although training load has remained constant, nutritional intake has been reduced. This reduction of energy intake could be an intentional strategy to reduce body weight or change body composition in weight sensitive sports and dance.  On the other hand in the column on the right, training load and hence energy demand to cover this has increased, but has not been matched by an increase in dietary intake. In both these situations, whether unintentional or intentional, the net results is LEA, insufficient to maintain health. This situation of LEA will also ultimately impact on athletic performance as optimal health is necessary to realise full athletic potential.

EnergyBalance

Although LEA is the underlying aetiology of RED-S, there are many methodological and financial issues measuring LEA accurately in “free living athletes“. In any case, the physiological response varies between individuals and depends on the magnitude, duration and timing of LEA. Therefore it is more informative to measure the functional responses of an individual to LEA, rather than the value calculated for EA. As such, Endocrine markers provide objective and quantifiable measures of physiological responses to EA. These markers also reflect the temporal dimension of LEA; whether acute or chronic. In short, as hormones exert network effects, Endocrine markers reflect the response of multiple systems in an individual to LEA. So by measuring these key markers, alongside taking a sport specific medical history, provides the information to build a detailed picture of EA for the individual, with dimensions of time and magnitude of LEA. This information empowers the athlete/dancer to modify the 3 key factors under their control of training load, nutrition and recovery to optimise their health and athletic performance.

Slide1

Why?

Who is at risk of developing RED-S? Any athlete involved in sports or dance where being light weight confers a performance or aesthetic advantage. This is not restricted to elite athletes and dancers. Indeed the aspiring amateur or exerciser could be more at risk, without the benefit of a support team present at professional level. Young athletes are at particular risk during an already high energy demand state of growth and development. Therefore early identification of athletes and dancers at risk of LEA is key to prevention of development of the health and performance consequences outlined in the RED-S clinical model. Although there is a questionnaire available for screening for female athletes at risk of LEA, more research is emerging for effective and practical methods which are sport specific and include male athletes.

How?

Early medical input is important as RED-S is diagnosis of exclusion. In other words medical conditions per se need to be ruled out before arriving at a diagnosis of RED-S.  Prompt medical review is often dependent on other healthcare professionals, fellow athletes/dancers, coaches/teachers and parents/friends all being aware and therefore alert to RED-S. With this in mind, the Health4Performance website has areas for all of those potentially involved,  with tailored comments on What to look out for? What to do? Ultimately a team approach and collaboration between all these groups is important. Not only in identification of those at risk of LEA, but in an integrated support network for the athlete/dancer to return to optimal health and performance.

References

Heath4Performance BASEM Educational Resource

Video introduction to Health4Performance website

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) BJSM 2018

What is Dance Medicine? BJSM 2018

Identification and management of RED-S Podcast 2018

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists Keay, Francis, Hind. BJM Open Sport and Exercise Medicine 2018

How to Identify Male Cyclists at Risk of RED-S? 2018

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes IJSNM 2018

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes IJSNM 2017

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

 

How to Identify Male Cyclists at Risk of RED-S?

Relative energy deficiency in sport (RED-S) is a clinical model that describes the potential adverse health and performance consequences of low energy availability (LEA) in male and female athletes. Identification of athletes at risk of LEA can potentially prevent these adverse clinical outcomes.

Athletes at risk of RED-S are those involved in sports where low body weight confers a performance or aesthetic advantage. In the case of competitive road cycling, being light  weight results in favourable power to weight ratio to overcome gravity when cycling uphill. How can male cyclists at risk of LEA be effectively identified in a practical manner?

Energy availability (EA) is defined as the residual energy available from dietary intake, once energy expenditure from exercise training has been subtracted. This available energy is expressed as KCal/Kg fat free mass (FFM). A value of 45 KCal/Kg FFM is roughly equivalent to basal metabolic rate, in other words the energy required to sustain health. In order to quantify EA, accurate measurements of energy intake and expenditure, and FFM assessed from dual X ray absorptiometry (DXA), need to be undertaken. However this is not practical or feasible to undertake all these measurements outside the research setting. Furthermore, methodology for assessing energy intake and expenditure is laborious and fraught with inaccuracies and subjectivity in the case of diet diaries for “free living athletes“. Even if a value is calculated for EA, this is only valid for the time of measurement and does not give any insights into the temporal aspect of EA. Furthermore, an absolute EA threshold has not been established, below which clinical symptoms or performance effects of RED-S occur.

Self reported questionnaires have been shown to be surrogates of low EA in female athletes. However there are no such sport specific questionnaires, or any questionnaires for male athletes. Endocrine and metabolic markers have been proposed as quantitative surrogate measures of EA and shown to be linked to the RED-S clinical outcome of stress fractures in runners. In female athletes the clinical sign of regular menstruation demonstrates a functioning H-P ovarian axis, not suppressed by LEA. What about male athletes? Although hypothalamic suppression of the reproductive axis due to LEA can result in low testosterone, high training loads, in presence of adequate EA, can lead to the same negative effect on testosterone concentration.

Sam

Male cyclists present a further level of complexity in assessing EA status. In contrast to runners, stress fracture will not be an early clinical warning sign of impaired bone health resulting from low EA. Furthermore cyclists are already at risk of poor bone health due to the non weight bearing nature of the sport. Nevertheless, traumatic fracture from bike falls is the main type of injury in cycling, with vertebral fracture requiring the longest time off the bike. Chris Boardman, a serial Olympic medal winner in cycling, retired in his early 30s with osteoporosis. In other words, in road cycling, the combined effect of the lack of osteogenic stimulus and LEA can produce clinically significant adverse effects on bone health.

What practical clinical tools are most effective at identifying competitive male cyclists at risk of the health and performance consequences of LEA outlined in the RED-S model? This was the question our recent study addressed. The lumbar spine is a skeletal site known to be most impacted by nutrition and endocrine factors and DXA is recognised as the “gold standard” of quantifying age matched Z score for bone mineral density (BMD) in the risk stratification of RED-S. What is the clinical measure indicative of this established and clinically significant sign of RED-S on lumbar spine BMD? Would it be testosterone concentration, as suggested in the study of runners? Another blood marker? Cycle training load? Off bike exercise, as suggested in some previous studies? Clinical assessment by interview?

Using a decision tree approach, the factor most indicative of impaired age matched (Z score) lumbar spine BMD was sport specific clinical assessment of EA. This assessment took the form of a newly developed sports specific energy availability questionnaire and interview (SEAQ-I). Reinforcing the concept that the most important skill in clinical medical practice is taking a detailed history. Questionnaire alone can lead to athletes giving “correct” answers on nutrition and training load. Clinical interview gave details on the temporal aspects of EA in the context of cycle training schedule: whether riders where experiencing acute intermittent LEA, as with multiple weekly fasted rides, or chronic sustained LEA with prolonged periods of suppressed body weight. Additionally the SEAQ-I provided insights on attitudes to training and nutrition practices.

Cyclists identified as having LEA from SEAQ-I, had significantly lower lumbar spine BMD than those riders assessed as having adequate EA. Furthermore, the lowest lumbar spine BMD was found amongst LEA cyclists who had not practised any load bearing sport prior to focusing on cycling. This finding is of particular concern, as if cycling from adolescence is not integrated with weight bearing exercise and adequate nutrition when peak bone mass (PBM) is being accumulated, then this risks impaired bone health moving into adulthood.

Further extension of the decision tree analysis demonstrated that in those cyclists with adequate EA assessed from SEAQ-I, vitamin D concentration was the factor indicative of lumbar spine BMD. Vitamin D is emerging as an important consideration for athletes, for bone health, muscle strength and immune function. Furthermore synergistic interactions with other steroid hormones, such as testosterone could be significant.

What about the effects of EA on cycling performance? For athletes, athletic performance is the top priority. In competitive road cycling the “gold standard” performance measure is functional threshold power (FTP) Watts/Kg, produced over 60 minutes. In the current study, 60 minute FTP Watts/Kg had a significant relationship to training load. However cyclists in chronic LEA were under performing, in other words not able to produce the power anticipated for a given training load. These chronic LEA cyclists also had significantly lower testosterone concentration. Periodised carbohydrate intake for low intensity sessions is a strategy for increasing training stimulus. However if this acute intermittent LEA is superimposed on a background of chronic LEA, then this can be counter productive in producing beneficial training adaptations. Increasing training load improves performance, but this training is only effective if fuelling is tailored accordingly.

Male athletes can be at risk of developing the health and performance consequences of LEA as described in the RED-S clinical model. The recent study of competitive male road cyclists shows that a sport specific questionnaire, combined with clinical interview (SEAQ-I) is an effective and practical method of identifying athletes at risk of LEA. The temporal dimension of LEA was correlated to quantifiable health and performance consequences of RED-S.

References 

Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists  Keay, Francis, Hind, BMJ Open in Sport and Exercise Medicine 2018

2018 UPDATE: Relative Energy Deficiency in Sport (RED-S) Keay, BJSM 2018

Fuelling for Cycling Performance Science4Performance

Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad BJSM 2013

Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes International Journal of Sport Nutrition and Exercise Metabolism 2018

Treating exercise-associated low testosterone and its related symptoms The Physician and Sports Medicine 2018

Male Cyclists: bones, body composition, nutrition, performance Keay, BJSM 2018

Cyclists: Make No Bones About It Keay, BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Cyclists: How to Support Bone Health?

Synergistic interactions of steroid hormones Keay BJSM 2018

Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis Sports Medicine 2018