Relative Energy Deficiency in Sport (RED-S) 2018 update

What updates are presented in the IOC consensus statement on RED-S 2018?

Prevention

Awareness is the key to prevention. Yet RED-S continues to go unrecognised. Less than 50% of clinicians, physiotherapists and coaches are reported as able to identify the components of the female athlete triad. In a survey of female exercisers in Australia, half were unaware that menstrual dysfunction impacts bone health. Note that these concerning statistics relate to the female athlete triad. Lack of awareness of RED-S in male athletes is even more marked. RED-S as a condition impacting males, as well as females, was described in the initial IOC consensus statement published in 2014. However there is evidence of the occurrence of RED-S in male athletes pre-dating this.

Identification

Identifying an athlete/dancer with RED-S is not always straight forward. In dance or sports where being light weight confers a performance or aesthetic advantage, how can a coach/teacher distinguish between athletes who have this type of physique “naturally” and those who have disordered eating and are at risk of RED-S?  Equally, low energy availability could be a result either of intentional nutrition restriction to control body weight and composition, or an unintentional consequence of not matching an increase in energy expenditure (due to increased training load), with a corresponding increase in energy intake.

Performance effects

Performance is paramount to any athlete or dancer. Apart from physical ability, being driven and determined are important characteristics to achieve success. If weight loss is perceived as achieving a performance advantage, then this can become a competitive goal in its own right: in terms of the individual and amongst teammates. This underlies the interactive effect of psychological factors in the development and progression in the severity of RED-S.

There is both theoretical and practical evidence that short term low energy availability impairs athletic performance as the body is less able to undertake high quality sessions and benefit from the physiological adaptations to exercise. Within day energy deficits have been shown to have adverse effects in both male and female athletes in terms of impact on oestradiol/testosterone and cortisol concentrations. Failure to refuel with carbohydrate and protein promptly after a training session in male runners has been shown to have an adverse effect on bone turnover markers.

To underline the adverse performance effect of low energy availability, a recent study demonstrated that in female athletes, those with functional hypothalamic amenorrhea displayed decreased neuromuscular performance compared to their eumenorrhoeic counterparts. This adverse effect on performance is of particular concern where such skills are crucial in precisely those sports/dance where RED-S is most prevalent. Clearly this situation puts such athletes at increased injury risk, especially if associated with adverse bone mineral density (BMD) due to low energy availability.

Ironically the long term consequences of low energy availability produce adverse effects on body composition: increased fat/lean and reduction in BMD. In other words, the precise opposite effects of what an energy restricted athlete is trying to achieve. In terms of bone health, the lumbar spine is most sensitive to nutrition/endocrine factors (apart from rowers where mechanical loading can attenuate BMD loss at this site in RED-S). Suboptimal BMD is associated with an increased risk of bone injury and therefore impaired performance.

REDs
Keay BJSM 2017

Medical Assessment

Low energy availability is the fundamental issue driving the multi-system dysfunction in the endocrine, metabolic, haematological, cardiovascular, gastrointestinal, immunological and psychological systems in RED-S. However, there are practical issues with directly quantifying energy availability as this is subject to the inaccuracies of reliably measuring energy intake and output. Endocrine and metabolic markers have been shown to more objective indicators of low energy availability, which in turn are correlated to performance outcomes such as bone stress injury in male and female athletes. In the case of female athletes there is an obvious clinical indicator of sufficient energy availability: menstrual cycles. As there is no such obvious clinical sign in male athletes is this why RED-S is less frequently recognised? In both female and male athletes there is some degree of clinical variation: there is no absolute threshold cut off with a set temporal component of low energy availability resulting in amenorrhoea or low testosterone in males. Therefore the IOC recommends that individual clinical evaluation include discussion of nutrition attitudes and practices, combined with menstrual history for females and endocrine markers for male and female athletes will give a very clear indication if an athlete is at risk of/has RED-S.

 

Management

RED-S is a diagnosis of exclusion. Once medical conditions per se have been excluded, RED-S presents a multi-system dysfunction caused by a disrupted periodisation of nutrition/training/recovery. For an athlete the motivation to address these imbalances is to be in a position reach their full athletic potential. This attainment is compromised in RED-S.

Pharmacological interventions are not recommended as first line management in amenorrhoeic athletes. Oral contraception (OCP) masks amenorrhoea with withdrawal bleeds. OCP does not support bone health and indeed may exacerbate bone loss by suppressing further IGF-1. Although transdermal oestrogen, combined with cyclic progesterone does not down regulate IGF-1, nevertheless any hormonal intervention cannot be a long term solution, as bone loss will continue if energy availability is not addressed as a priority.

What next?

The IOC statement suggests further research should include studies with allocation of athletes to intervention groups, with assessment of effects over a substantial time period. Currently a study of competitive male road cyclists over a training/competition season is being undertaken to evaluate the effects of nutrition advice and off bike skeletal loading exercise. Crucially outcome measures will not only be based on bone health and endocrine markers, but measures of performance in terms of power production and race results.

To raise awareness and build support pathways as recommended in the IOC statement,  this is an on going process which requires communication between athlete/dancers, coaches/teachers, parents and healthcare professionals both medical and non medical working with male and female athletes.

References

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update BJSM 2018

Male Cyclists: bones, body composition, nutrition, performance BJSM 2018

Male Athletes: the Bare Bones of Cyclists

Addiction to Exercise – what distinguishes a healthy level of commitment from exercise addiction? BJSM 2017

Sports Endocrinology – what does it have to do with performance? BJSM 2017

Within‐day energy deficiency and reproductive function in female endurance athletes Scandinavian Journal of Science and medicine in Sports 2017

The Effect of Postexercise Carbohydrate and Protein Ingestion on Bone Metabolism Translational Journal of the American College of Sports Medicine 2017

Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes Medicine & Science in Sports & Exercise. 49(12):2478–2485, DEC 2017

Cumulative Endocrine Dysfunction in Relative Energy Deficiency in Sport (RED-S) BJSM 2018

Cyclists: Make No Bones About It BJSM 2018

Low Energy Availability is Difficult to Assess But Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes Sports Nutrition and Exercise Metabolism 2017

Part 2: Health, Hormones and Human Performance take centre stage BJSM 2018

Cyclists: How to Support Bone Health?

Healthy Hormones BASEM 2018

 

 

 

Clusters of Athletes

 At some time, most athletes experience periods of underperformance. What are the potential causes and contributing factors?

classification

Effective training improves sports performance through a process of adaptation that occurs, at both the cellular and system levels, during the recovery phase. Training overload must be balanced with sufficient subsequent recovery. A long-term improvement in form is expected, following a temporary dip in performance, due to short-term fatigue.

However, when an athlete experiences a stagnation of performance, what are the potential underlying causes? How should these be addressed to prevent an acute situation developing into a more chronic spiral of decreasing performance?

Depending on clinical presentation, the first step is to exclude medical conditions. Potential infective causes include Epstein Barr virus (particularly in young athletes), Lyme disease and Weil’s disease. Systemic inflammatory conditions should be considered. Endocrine and metabolic causes include pituitary, gonadal, adrenal, thyroid  dysfunction, blood sugar control,  and malabsorption.

If medical conditions are excluded, attention should turn to the athlete’s energy balance in the context of adherence to the current training plan. Potential causes of underperformance, the inability to improve in training and competition, are illustrated in the diagram above.

Athletes in the upper right quadrant fail to live up to performance expectations, in spite of maintaining a good energy balance while adhering to the prescribed training plan. However, they may represent non-functional overreaching, where overload is not balanced with sufficient recovery. In other words, the periodisation of training and recovery is not optimised. The balance between chronic training load (fitness) and acute training load (fatigue) provides a useful metric for assessing form. Heart rate variability (HRV) can be another potentially useful measure in detecting aerobic, endurance fatigue. If the training plan is not producing the expected improvements, then this plan needs revising. Don’t forget that sleep is essential to facilitate endocrine driven adaptations to exercise training.

Athletes in the lower right quadrant are of more concern. Inadequate energy balance, especially during periods of increased training load or intentional weight loss, can be a cause of underperformance, despite the athlete being able to adhere to the training plan. This would correspond to being at risk of developing relative energy deficiency in sport (RED-S) on the amber warning in the risk stratification laid out by the International Olympic Committee.

Both of these groups are able to adhere to a training plan, but suboptimal training and recovery periodisation and/or insufficient energy intake can produce a situation of underperformance. Intervention is required to prevent them moving into the clusters on the left, representing a more chronic underperformance scenarios that are therefore more difficult to rectify.

Athletes in the upper left quadrant exhibit overtraining syndrome: a prolonged maladaptation process accompanied by a decrease in performance (not merely stagnation) and inability to adhere to training plan. The metric of decreased HRV and inability of heart rate to accelerate in response to exercise have been suggested as markers of overtraining.

Those athletes in the lower left quadrant fall into the RED-S category, where multiple interacting Endocrine networks are impacted by an energy deficient state. RED-S not only impairs sports performance, but impacts both current and future health. For example low endogenous levels of sex steroids and insulin-like growth factor 1 (IGF1) disrupt formation of bone microarchitecture and bone mineralisation, resulting in increased risk of recurrent stress fracture in addition to potentially irreversible bone loss in the longer term. In cases of recurrent injury and underperformance amongst athletes it is imperative to exclude Endocrine dysfunction and then consider whether RED-S is the fundamental cause.

There are many potential causes of underperformance in athletes. Once medical conditions have been excluded, the main aim should be to prevent acute situations becoming chronic and therefore more difficult to resolve.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Sport Endocrinology Dr N. Keay, British Journal of Sport Medicine 2017

Sport Performance and RED-S, insights from recent Annual Sport and Exercise Medicine and Innovations in Sport and Exercise Nutrition Conferences Dr N.Keay, British Journal of Sport Medicine 2017

Relative Energy Deficiency in Sport CPD module for British Association of Sport and Exercise Medicine

Optimal Health: For All Athletes! Part 4 – Mechanisms, Dr N. Keay, British Association of Sport and Exercise Medicine

Balance of recovery and adaptation for sports performance Dr N. Keay, British Association of Sport and Exercise Medicine

Sleep for health and sports performance Dr N. Keay, British Journal of Sport Medicine

Optimal health: including female athletes! Part 1 Bones Dr N.Keay, British Journal of Sport Medicine

Inflammation: why and how much? Dr N. Keay, British Association of Sport and Exercise Medicine

Fatigue, Sport Performance and Hormones… Dr N.Keay, British Journal of Sport Medicine

Part 3: Training Stress Balance—So What? Joe Friel

Heart Rate Variability (HRV) Science for Sport

Relative Energy Deficiency in sport (REDs) Lecture by Professor Jorum Sundgot-Borgen, IOC working group on female athlete triad and IOC working group on body composition, health and performance. BAEM Spring Conference 2015.

Prevention, Diagnosis, and Treatment of the Overtraining Syndrome: Joint Consensus Statement of the European College of Sport Science and the American College of
Sports Medicine. Joint Consensus Statement. Medicine & Science in Sports & Exercise 2012

Enhancing Sport Performance: part 1

The good, the bad and the ugly

A medical perspective on clean athletes, dopers and abuse of the system

When I worked with the international medical research team investigating a method for detecting athletes doping with growth hormone (GH), I was struck by the co-operation of the medical teams and the athletes supporting this research in various countries. This project was supported by the International Olympic Committee and the drug companies manufacturing growth hormone who did not want to see this product mis-used.

growthhormone

Why would athletes seek to dope with GH? GH alters body composition by increasing lean mass and decreasing fat mass, a potential advantage for power sports. In addition to this anabolic effect, GH is potentially advantageous to physiology and metabolism in endurance sport by increasing use of lipid over glycogen as a substrate. However there are serious side effects of elevated GH levels as seen in patients suffering with acromegaly: including increased risk of diabetes mellitus, hypertension and cancer.

One of the challenges we encountered in developing a dope test for GH was that endogenously secreted growth hormone was virtually identical to the manufactured product. In addition, this peptide hormone is released episodically in a pulsatile manner and has a short plasma half life. So early on it was realised that direct measurement of growth hormone was not a reliable option, rather quantification of indirect plasma markers would be required. In turn that meant investigating the pharmacokinetic properties of these markers in exercising people.

So far so good. However what are the “normal” ranges for growth hormone and these secondary markers in elite athletes? The ranges used in the usual clinical hospital setting may not be accurate as exercise is a major stimulus for growth hormone release. Part of the reason elite athletes are better than amateur athletes is that they may have slightly different physiology and/or genetically determined physiology that responds more rapidly to training than the rest of us. So the first step was establishing what normal ranges are for growth hormone and its associated markers in elite athletes. Cue trips to Manchester velodrome with portable centrifuges, taking blood from Olympic medal winning rowers at the British Olympic Park and numerous evenings performing VO2 max tests on athletes.

Throughout this research I was struck by the desire of the elite athletes to participate in a study that would identify cheats, allowing them, as clean athletes, to compete on a level playing field. This gave those of us in medical research team extra incentive to come up with the most reliable and robust test possible. Nevertheless, we were aware that an arms race was taking place, with the dopers trying equally hard to cheat our test. Ultimately, however scientifically robust a test may be, it will not succeed if there is manipulation of the samples provided. This is what makes the alleged systemic abuse of the process so ugly.

For further discussion on Endocrine and Metabolic aspects of SEM come to the BASEM annual conference 22/3/18: Health, Hormones and Human Performance

References

Sports Endocrinology – what does it have to do with performance? Dr N. Keay, British Journal of Sports Medicine

From population based norms to personalised medicine: Health, Fitness, Sports Performance Dr N.Keay, British Journal of Sport Medicine 22/2/17

Keay N, Logobardi S, Ehrnborg C, Cittadini A, Rosen T, Healy ML, Dall R, Bassett E, Pentecost C, Powrie J, Boroujerdi M, Jorgensen JOL, Sacca L. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sport: a double blind, placebo controlled study. Journal of Endocrinology and Metabolism. 85 (4) 1505-1512. 2000.

Wallace J, Cuneo R, Keay N, Sonksen P. Responses of markers of bone and collagen turover to exercise, growth hormone (GH) administration and GH withdrawal in trained adult males. Journal of Endocrinology and Metabolism 2000. 85 (1): 124-33

Keay N. The effects of growth hormone misuse/abuse. Use and abuse of hormonal agents: Sport 1999. Vol 7, no 3, 11-12

Wallace J, Cuneo R, Baxter R, Orskov H, Keay N, Sonksen P. Responses of the growth hormone (GH) and insulin-like factor axis to exercise,GH administration and GH withdrawal in trained adult males: a potential test for GH abuse in sport. Journal of Endocrinology and Metabolism 1999. 84 (10): 3591-601

Keay N, Logobardi S, Ehrnborg C, Cittadini A, Rosen T, Healy ML, Dall R, Bassett E, Pentecost C, Powrie J, Boroujerdi M, Jorgensen JOL, Sacca L. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential usefulness as in the detection of GH abuse in sport: a double blind, placebo controlled study. Endocrine Society Conference 1999

Wallace J, Cuneo R, Keay N. Bone markers and growth hormone abuse in athletes. Growth hormone and IGF Research, vol 8: 4: 348

Cuneo R, Wallace J, Keay N. Use of bone markers to detect growth hormone abuse in sport. Proceedings of Annual Scientific Meeting, Endocrine Society of Australia. August 1998, vol 41, p55

Enabling Sport Performance: part 2

Enhancing sports performance: part 3